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A system governed by (stochastic) Difference Equation:

(1)

Observations at discrete times:

(2)

Observational error white in time and Gaussian (nice, not essential). 

(3)

Complete history of observations is: 

(4)

Goal: Find probability distribution for state: 

Analysis Forecast (5)

A General Description of the Forecast Problem 

dxt = f xt ,t( ) +G xt ,t( )dβt , t ≥ 0

yk = h xk ,tk( ) + vk; k = 1,2,...; tk+1 > tk ≥ t0

vk → N 0,Rk( )

Yτ = yl;tl ≤ τ{ }

p x,t |Yt( ) p x,t + |Yt( )
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A General Description of the Forecast Problem 
State between observation times obtained from Difference Equation.
Need to update state given new observations:

(6)

Apply Bayes’ rule:

(7)

Noise is white in time (3), so: 

(8)

Integrate numerator to get normalizing denominator:

(9)

p x,tk |Ytk( ) = p x,tk | yk ,Ytk−1( )

p x,tk |Ytk( ) = p(yk | xk ,Ytk−1 )p(x,tk |Ytk−1 )
p(yk |Ytk−1 )

p yk | xk ,Ytk−1( ) = p yk | xk( )

p(yk |Ytk−1 ) = p(yk | x)p(x,tk |Ytk−1 )dx∫
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A General Description of the Forecast Problem 

Probability after new observation:

Prior (forecast)
Likelihood

(10)

Posterior (analysis).
Denominator just normalization.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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Assumes:
linear model Gaussian noise

Gaussian state 

linear forward operator,

Gaussian observation error

Methods for Solving the Forecast Problem: Kalman Filter

dxt = f xt ,t( ) +G xt ,t( )dβt , t ≥ 0

yk = h xk ,tk( ) + vk; k = 1,2,...; tk+1 > tk ≥ t0

Jeff Anderson, CSE21 pg 6



N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

Product of Two Gaussians
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Covariance:

Mean: 

∑ = (∑1
−1+∑2

−1)−1

µ =∑(∑1
−1µ1 +∑2

−1µ2 )

Product of Two Gaussians

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)
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Weight:

We’ll ignore the weight since we immediately normalize products to be PDFs.

Product of Two Gaussians

c = 1
(2∏)d /2 ∑1 +∑2

1/2 exp − 1
2

µ2 − µ1( )T (∑1 +∑2 )
−1 µ2 − µ1( )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

Covariance:

Mean: 

∑ = (∑1
−1+∑2

−1)−1
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µ =∑(∑1
−1µ1 +∑2

−1µ2 )



The Kalman Filter

(10)

Numerator is just product of two gaussians.

Denominator just normalizes posterior to be a PDF.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

(10)p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

(10)p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

(10)p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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Product of d-dimensional normals with means and and

covariance matrices      and is normal.

Covariance:

Mean: 

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

∑ = (∑1
−1+∑2

−1)−1

u = (∑1
−1+∑2

−1)−1(∑1
−1 µ1 +∑2

−1 µ2 )

µ1 µ2
∑1 ∑2

Kalman Filter: Cost Challenges

Must store and invert covariance matrices.
Too big to store for large problems.
Too costly to invert, > O(n2).
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The Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 15

1. Start with ensemble of forecasts.



The Ensemble Kalman Filter
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2. Fit a normal to ensemble.



The Ensemble Kalman Filter
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3. Do standard Kalman filter.



The Ensemble Kalman Filter
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Have continuous posterior; need an ensemble.



The Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 19

4. Can create an ensemble with exact sample mean 
and covariance of continuous posterior.



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 20

1. No need for linear model to advance covariance estimate.



One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

Jeff Anderson, CSE21 pg 21

Without loss of generality (for Kalman filter)…

Can assimilate observations serially, one at a time.



Fit a Gaussian to the sample.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Get the observation likelihood.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Compute the continuous posterior PDF.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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Use a deterministic algorithm to ‘adjust’ the ensemble.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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First, ‘shift’ the ensemble to have the exact mean of the posterior.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation
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First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.

Sample statistics are identical to Kalman filter.

One-Dimensional Ensemble Kalman Filter: Assimilating an Observation

Jeff Anderson, CSE21 pg 27



Ensemble filters: Updating additional prior state variables 

Jeff Anderson, CSE21 pg 28

Without loss of generality (for Kalman filter)…

Can compute impact of observation on each state variable 
independently.



Ensemble filters: Updating additional prior state variables 
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Ensemble filters: Updating additional prior state variables 

Assume that all we 
know is the prior joint 
distribution.

How should the 
unobserved variable be 
impacted?

Least squares.

Equivalent to linear 
regression.

Same as assuming 
bi-Gaussian prior.
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

How should the 
unobserved variable be 
impacted?

1st choice: least squares

Begin by finding least 
squares fit.
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Next, regress the 
observed variable 
increments onto 
increments for the 
unobserved variable. 

Equivalent to first finding 
image of increment in 
joint space. 
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Next, regress the 
observed variable 
increments onto 
increments for the 
unobserved variable. 

Equivalent to first finding 
image of increment in 
joint space. 
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Regression: Equivalent to 
first finding image of 
increment in joint space.

Then projecting from 
joint space onto 
unobserved priors.3
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Ensemble filters: Updating additional prior state variables 

Have joint prior 
distribution of two 
variables.

Regression: Equivalent to 
first finding image of 
increment in joint space.

Then projecting from 
joint space onto 
unobserved priors.3
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Ensemble filters: Updating additional prior state variables 

Now have an updated 
(posterior) ensemble for 
the unobserved variable. 

Fitting Gaussians shows 
that mean and variance 
have changed. 

Other features of the 
prior distribution may 
also have changed.3
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information as previous slides.
Compressed these two. Compressed these two. 
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Ensemble filters: Updating additional prior state variables 

Now have an updated 
(posterior) ensemble for 
the unobserved variable. 

Fitting Gaussians shows 
that mean and variance 
have changed. 

Other features of the 
prior distribution may 
also have changed.3
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How an Ensemble Filter Works for Geophysical Data Assimilation

Jeff Anderson, CSE21 pg 38

Without loss of generality (for ensemble Kalman filter)…

Can do data assimilation in the following way.



How an Ensemble Filter Works for Geophysical Data Assimilation

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.

Jeff Anderson, CSE21 pg 39



How an Ensemble Filter Works for Geophysical Data Assimilation

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Jeff Anderson, CSE21 pg 40



How an Ensemble Filter Works for Geophysical Data Assimilation

3. Get observed value and observational error distribution
from observing system.

Jeff Anderson, CSE21 pg 41



How an Ensemble Filter Works for Geophysical Data Assimilation

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Jeff Anderson, CSE21 pg 42



How an Ensemble Filter Works for Geophysical Data Assimilation

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Jeff Anderson, CSE21 pg 43



How an Ensemble Filter Works for Geophysical Data Assimilation

6. When all ensemble members for each state variable are 
updated, integrate to time of next observation …

Jeff Anderson, CSE21 pg 44



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 45

1. No need for linear model to advance covariance estimate.

2. No need for linear forward operator.



Ensemble Filter for Lorenz-96 40-Variable Model

40 state variables: X1, X2,..., X40.
dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
Acts ‘something’ like weather around a latitude band.

Jeff Anderson, CSE21 pg 46



Lorenz-96 is sensitive to small perturbations

Introduce 20 ‘ensemble’ state estimates.
Each is perturbed for each of the 40-variables at time 0.
Refer to unperturbed control integration as ‘truth’.

Jeff Anderson, CSE21 pg 47



Assimilate ‘observations’ from 40 random locations.

Interpolate truth to station location.
Simulate observational error: 

Add random draw from N(0, 16) to each.
Start from ‘climatological’ 20-member ensemble.

Jeff Anderson, CSE21 pg 48



Some Error Sources in Ensemble Filters

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Jeff Anderson, CSE21 pg 49



Lorenz-96 Assimilation with localization of observation impact
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Lorenz-96 Assimilation with localization of observation impact

Jeff Anderson, CSE21 pg 52



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 53

1. No need for linear model to advance covariance estimate.

2. No need for linear forward operator.

3. No need for unbiased estimate of covariance.



Some Error Sources in Ensemble Filters

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Jeff Anderson, CSE21 pg 54



Assimilating in the presence of simulated model error

Jeff Anderson, CSE21 pg 55

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.

Time evolution for first state variable shown.
Assimilating model quickly diverges from ‘true’ model.



Assimilating in the presence of simulated model error

Jeff Anderson, CSE21 pg 56

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F.
For truth, use F = 8.
In assimilating model, use F = 6.



Reduce confidence in prior to deal with model error

Jeff Anderson, CSE21 pg 57

Use inflation.
Simply increase prior ensemble variance for each state variable.
Adaptive algorithms use observations to guide this.
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Assimilating with Inflation in Presence of Model Error

Jeff Anderson, CSE21 pg 58

Inflation is a function of state variable and time.
Automatically selected by adaptive inflation algorithm.



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 59

1. No need for linear model to advance covariance estimate.

2. No need for linear forward operator.

3. No need for unbiased estimate of covariance.

4. No need for unbiased model prior.



Aside: Correcting Errors via ML is a Growth Industry

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Jeff Anderson, CSE21 pg 60



𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Bayes Rule (1D example in ‘observation space’)

Kalman assimilation algorithms assume Gaussians.
May be okay for quantity like temperature.

Jeff Anderson, CSE21 pg 61



𝑃 𝐱!!|𝐘!! =
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Bayes Rule (1D example in ‘observation space’)

Kalman assimilation algorithms assume Gaussians.
Tracer concentration is bounded. Gaussian a poor choice.

Jeff Anderson, CSE21 pg 62
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Temperature (for example)

Bayes Rule (1D example in ‘observation space’)

Can fit any prior and posterior pdfs, 
if we can get posterior ensemble.
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Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.

Jeff Anderson, CSE21 pg 64



Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.
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Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.
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Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.
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Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Partial gaussian kernels on tails, N(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.
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Observation-Space Rank Histogram Filter
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Step 2: Use likelihood to compute weight for each ensemble member.
• Analogous to classical particle filter.
• Can be extended to non-gaussian obs. likelihoods.
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Observation-Space Rank Histogram Filter
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Step 2: Use likelihood to compute weight for each ensemble member.
• Can approximate interior likelihood with linear fit; for efficiency.
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Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).
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Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).
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Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).
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Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).
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Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Product of prior gaussian kernel with likelihood for tails.
• Easy for gaussian likelihood.
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Observation-Space Rank Histogram Filter
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RHF Posterior

Step 4: Compute posterior ensemble members:
• (ens_size +1)-1 of posterior mass between each ensemble pair.
• (ens_size +1)-1 in each tail.
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Observation-Space Rank Histogram Filter
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RHF Posterior

EAKF Posterior

Compare to standard Ensemble Adjustment Filter (EAKF).
Nearly gaussian case, differences are small.
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Observation-Space Rank Histogram Filter
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EAKF Posterior

Rank Histogram gets rid of outlier that is clearly inconsistent with obs.
EAKF can’t get rid of outlier.
Large prior variance from outlier causes EAKF to shift all members too 

much towards observation.
Jeff Anderson, CSE21 pg 78



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 79

1. No need for linear model to advance covariance estimate.

2. No need for linear forward operator.

3. No need for unbiased estimate of covariance.

4. No need for unbiased model prior.

5. (Almost) no Gaussian assumed for prior.



Rank Histogram Filter for State Marginals

Step 1: Get continuous prior distribution density (same).
• Partial gaussian kernels on tails, N(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.
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Rank Histogram Filter for State Marginals

Step 2: Use likelihood to compute weight for each ensemble member 
(same).

Jeff Anderson, CSE21 pg 81



Rank Histogram Filter for State Marginals

Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature. 
• Uniform likelihood tails! (Different). No Gaussian assumption left.

Jeff Anderson, CSE21 pg 82



Rank Histogram Filter for State Marginals

Step 3: Compute continuous posterior distribution (same).
• Really simple with uniform likelihood tails.
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Rank Histogram Filter for State Marginals

Step 4: Compute updated ensemble members (same):
• (ens_size +1)-1 of posterior mass between each ensemble pair.
• (ens_size +1)-1 in each tail.

Jeff Anderson, CSE21 pg 84



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 85

1. No need for linear model to advance covariance estimate.

2. No need for linear forward operator.

3. No need for unbiased estimate of covariance.

4. No need for unbiased model prior.

5. (Almost) no need for Gaussian prior.

6. No need for Gaussian likelihood.

7. Reduced need for linear regression for state increments.



Removing the Kalman from the Ensemble Kalman Filter

Jeff Anderson, CSE21 pg 86

What Kalman assumptions are left?

Still need information from regression for state increments.
For more see my detailed talk:
MS332:  Advances in Data Assimilation - Part II of II
Friday, March 5 10:20 AM - 12:00 PM
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What Kalman assumptions are left?

Still need information from regression for state increments.

Assumes bivariate information is sufficient.

Not sure how to go further unless…
Just go to the particle filter. 

Lots of fun still left merging ensemble and particle filters!
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