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Schematic of a Sequential Ensemble Filter

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.



Schematic of a Sequential Ensemble Filter

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Can think about single 
observation without (too 
much) loss of generality.



Schematic of a Sequential Ensemble Filter

3. Get observed value and observational error distribution
from observing system.



Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).

Ensemble Kalman filters assume 
Gaussianity for this problem. 

Can compute increments without 
Gaussian assumptions. (RHF).



Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.

Theory: impact of observation 
increments on each state 
variable can be handled 
independently!



Schematic of a Sequential Ensemble Filter

6. When all ensemble members for each state variable are 
updated, there is a new analysis. Integrate to time of next 
observation …
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Bayes’ Rule

𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Bayes Rule (1D example)

Bayes rule is the key to ensemble data assimilation.
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Bayes’ Rule

𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Prior: from 
model forecast.

Bayes Rule (1D example)
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𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Likelihood: 
from instrument.

Bayes Rule (1D example)
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Product (Numerator)

𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Bayes Rule (1D example)
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Normalization (Denom.)

𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Bayes Rule (1D example)
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Normalization (Denom.)

Posterior

𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Temperature (for example)

Posterior: 
(analysis).

Bayes Rule (1D example)
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𝑃 𝐱!!|𝐘!! =
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𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Bayes Rule (1D example)

Most ensemble assimilation algorithms assume Gaussians.
May be okay for quantity like temperature.
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𝑃 𝐱!!|𝐘!! =
𝑃 𝐲"|𝐱 𝑃 𝐱!!|𝐘!!"#
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

Bayes Rule (1D example)

Most ensemble assimilation algorithms assume Gaussians.
Tracer concentration is bounded. Gaussian a poor choice.



Observation-Space Rank Histogram Filter
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Apply forward operator to each ensemble member.
Get prior ensemble in observation space.



Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.



Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.



Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.



Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Place (ens_size + 1)-1 mass between adjacent ensemble members.
• Reminiscent of rank histogram evaluation method.



Observation-Space Rank Histogram Filter
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Step 1: Get continuous prior distribution density.
• Partial gaussian kernels on tails, N(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.



Observation-Space Rank Histogram Filter
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Step 2: Use likelihood to compute weight for each ensemble member.
• Analogous to classical particle filter.
• Can be extended to non-gaussian obs. likelihoods.



Observation-Space Rank Histogram Filter
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Step 2: Use likelihood to compute weight for each ensemble member.
• Can approximate interior likelihood with linear fit; for efficiency.



Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).



Observation-Space Rank Histogram Filter

−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

PriorPr
ob

ab
ilit

y 
D

en
si

ty

Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).



Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).



Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature, take product.

(Displayed product normalized to make posterior a PDF).



Observation-Space Rank Histogram Filter
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Step 3: Compute continuous posterior distribution.
• Product of prior gaussian kernel with likelihood for tails.
• Easy for gaussian likelihood.



Observation-Space Rank Histogram Filter
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RHF Posterior

Step 4: Compute posterior ensemble members:
• (ens_size +1)-1 of posterior mass between each ensemble pair.
• (ens_size +1)-1 in each tail.



Observation-Space Rank Histogram Filter
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RHF Posterior

EAKF Posterior

Compare to standard Ensemble Adjustment Filter (EAKF).
Nearly gaussian case, differences are small.



Observation-Space Rank Histogram Filter
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RHF Posterior

EAKF Posterior

Rank Histogram gets rid of outlier that is clearly inconsistent with obs.
EAKF can’t get rid of outlier.
Large prior variance from outlier causes EAKF to shift all members too 

much towards observation.



Rank Histogram Filter for State Marginals

Step 1: Get continuous prior distribution density (same).
• Partial gaussian kernels on tails, N(tail_mean, ens_sd).
• tail_mean selected so that (ens_size + 1)-1 mass is in tail.



Rank Histogram Filter for State Marginals

Step 2: Use likelihood to compute weight for each ensemble member 
(same).



Rank Histogram Filter for State Marginals

Step 3: Compute continuous posterior distribution.
• Approximate likelihood with trapezoidal quadrature. 
• Uniform tails! (Different).



Rank Histogram Filter for State Marginals

Step 3: Compute continuous posterior distribution (same).
• Really simple with uniform likelihood tails.



Rank Histogram Filter for State Marginals

Step 4: Compute updated ensemble members (same):
• (ens_size +1)-1 of posterior mass between each ensemble pair.
• (ens_size +1)-1 in each tail.



Schematic of a Sequential Rank Histogram Filter for State Marginals

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.



Schematic of a Sequential Rank Histogram Filter for State Marginals

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.



Schematic of a Sequential Rank Histogram Filter for State Marginals

3. Get observed value and observational error distribution
from observing system.



Schematic of a Sequential Rank Histogram Filter for State Marginals

4. Compute likelihood for each ensemble member. No need 
for gaussian error distribution or observation increments.



Schematic of a Sequential Rank Histogram Filter for State Marginals

5. Use RHF to update each state variable. Can be done in 
parallel.

But this just gives 
marginal for states. 
Can ‘pair’ values to 
ensembles in many 
ways.



Pairing RHF Marginals Values to Ensemble Members

Naïve method:

Rank statistics of posterior ensemble same as prior.
Ensemble member with smallest prior value gets smallest 
posterior value.

This works fairly well for some applications.



Pairing RHF Marginals Values to Ensemble Members

Marginal Adjustment RHF method (MARHF):

Do standard RHF with regression, get preliminary posterior.

Get RHF State Marginal.

Rank statistics of posterior same as preliminary posterior.
Ensemble member with smallest preliminary posterior value 
gets smallest posterior value from RHF State Marginal.

Works well for many applications (but more expensive).



Gaussian Bivariate Results

Prior is random draw from bivariate gaussian.
Mean 0.
Variance 1.
Specified covariance.

One variable is observed, error variance 1.

Look at posterior statistics averaged over many cases.



Gaussian Bivariate Results

RMSE of posterior ensemble mean, unobserved variable.
Marginal statistic, same for any pairing.

Dashed: EAKF.

Solid: State 
marginal RHF.



Gaussian Bivariate Results

RMSE of posterior variance, unobserved variable.
Marginal statistic, same for any pairing.

Dashed: EAKF.

Solid: State 
marginal RHF.



Gaussian Bivariate Results

RMSE of posterior correlation.
Bivariate statistic, pairing matters.

Dashed: EAKF.

Dotted: State 
marginal RHF.

Solid: MARHF.
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Additional RHF/MARHF Capabilities

Enforce additional prior constraints.
For instance, boundedness.

Use arbitrary likelihoods.
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RHF/MARHF with Bounded Prior

Standard RHF State Marginal.
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RHF/MARHF with Bounded Prior

RHF State Marginal, same ensemble but positive prior.
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Bounded State, Non-Gaussian Likelihoods

Bivariate example.

Prior of log is bivariate Gaussian, so prior is non-negative.

One variable observed. 

Likelihood is Gamma.
Shape parameter is same as first prior ensemble.
Scale parameter is 1.

Assimilate single observation for many random priors.
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Bounded State, Non-Gaussian Likelihoods

Compare Gamma likelihood to Gaussian approximation.
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Bounded State, Non-Gaussian Likelihoods

Compare 5 Methods

Observed Var. Unobserved Var. Likelihood
EAKF Regression Gaussian
RHF Regression Gaussian
RHF MARHF Gaussian
RHF Regression Gamma
RHF MARHF Gamma
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Percent Negative Posterior Members

Blue = 
MARHF

Solid = 
Gamma
Likelihood
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RMSE of Posterior Ensemble Mean

Blue = 
MARHF

Solid = 
Gamma
Likelihood
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RMSE of Posterior Variance

Blue = 
MARHF

Solid = 
Gamma
Likelihood
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Summary

RHF filters represent non-Gaussian priors, posteriors.

MARHF allows limited non-linearity.

Particularly applicable to bounded quantities.

MARHF more expensive, but less than factor of 2.

General data assimilation theme:
Find algorithms with power of particle filters,
but much reduced cost of ensemble methods.
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www.image.ucar.edu/DAReS/DART

All results here with DARTLAB tools 
freely available in DART.


