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THE QUESTIONS: WHY, HOow, &
WHEN?




1. Ensemble Covariance Inflation: Why?

O Simply, because we're not in optimal EnKF settings:

1. Highly nonlinear models
2. Massive model dimensions forces us to use small ensemble sizes;
can never really satisfy this:

hmP B
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3. Deal with many non-Gaussian phenomena (e.g., precipitation)
4. Unavoidable model errors
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2. Ensemble Covariance Inflation: How?

Spatially and Temporally Varying Adaptive Covariance Inflation:
p(Ald) o< p(A) - p(d]A) (1)

O Prior p(A); assumed Inverse Gamma
O Likelihood p(d|1); a Gaussian density where
o d = |y° —Xp| is the innovation

o formulated using innovation statistics [Derosiers et al. 2005]
E(d)=0; [E(d?) =02+ Ad)”°

O Posterior p(A|d)
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Spatially and Temporally Varying Adaptive Covariance Inflation:
p(Ald) o< p(A) - p(d]A) (1)

O Prior p(A); assumed Inverse Gamma
O Likelihood p(d|1); a Gaussian density where
o d = |y° —Xp| is the innovation

o formulated using innovation statistics [Derosiers et al. 2005]
E(d)=0; [E(d?) =02+ Ad)”°

O Posterior p(A|d)

Characteristics

- Adaptive in time; posterior becomes prior the next DA cycle
- Varies in space (affects the rank of the covariance)

- Variance increase is proportional to the size of the innovation
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3. Ensemble Covariance Inflation: When?

The algorithm can be used to inflate the prior covariance [Anderson 2009;
El Gharamti 2018, the posterior covariance [e.g., El Gharamti et al. 2019], or both
actually. So, what to do?
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3. Ensemble Covariance Inflation: When?

The algorithm can be used to inflate the prior covariance [Anderson 2009;
El Gharamti 2018, the posterior covariance [e.g., El Gharamti et al. 2019], or both
actually. So, what to do? Sampling Errors
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APPLICATION |: ATMOSPHERIC DA




4.1 Atmospheric DA: Configuration

O The Community Atmosphere Model (CAM; Neal et al. 2013)
O The Data Assimilation Research Testbed (DART; Anderson et al. 2003)
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4.1 Atmospheric DA: Configuration

O The Community Atmosphere Model (CAM; Neal et al. 2013)
O The Data Assimilation Research Testbed (DART, Anderson et al. 2003)

- 2° model + 26 levels

80 members; 6 weeks
Localization: GC ~ 960 km
Variables: PS, T, U, V, Q, ..

> RADIOSONDES: T, U, V. Q (74319) g8
4 e AIRCRAFT:T, U,V (69483)
“% " 1 = ACARS:T,U,V (52325
» SATELLITE: U, V (164173)

0° 60°E 120 180w 120°W 60°W 0°
Typical observations assimilated every
6 hours over CONUS
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4.2 Atmospheric DA: Obs-space diagnostics
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4.2 Atmospheric DA: Obs-space diagnostics

- Failing to use inflation
yields low-quality
estimates

- Posterior inflation
performs fairly well

- Prior inflation
outperforms posterior
inflation

- Best accuracy is obtained
after combining both
inflation schemes
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4.2 Atmospheric DA: Obs-space diagnostics

# of evaluated obs.
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4.2 Atmospheric DA: Obs-space diagnostics

# of evaluated obs.
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(Q) was not assimilated. It 20
was kept aside for verification
purposes only

- Largest biases are observed g
near the surface
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- Prior inflation is more

effective than posterior
inflation at mitigating the bias
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4.3 Atmospheric DA: State-space diagnostics

Temperature Prior Ensemble Spread at 600 hPa
28-Sep-2010 002

Posterior Inflation

Prior Inflation

180°W  120°W  60°W 60°E  120°E  180°W 180°W  120°W 0° 60°E  120°%E  180°W

O Largest uncertainties are present in the Southern Ocean
(sparsely observed)
O Prior inflation yields larger ensemble spread than posterior
inflation at this elevation
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4.3 Atmospheric DA: State-space diagnostics

Temperature Increment at 600 hPa
28-Sep-2010 00Z

Prior Inflation Posterior Inflation
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O Largest increments where the ensemble spread is high

O Larger DA increments suggested by prior inflation
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4.3 Atmospheric DA: State-space diagnostics

Temperature Inflation ()\) at 600 hPa
28-Sep-2010 00Z

Posterior Inflation

Prior Inflation

180°W  120°W  60°W 60°E  120°E  180°W 180°W  120°W  60°W 60°E  120°%E  180°W

O Prior inflation is the largest in the vicinity of the
observations (e.g., CONUS, Europe)

O Posterior inflation could point to locations where sampling
error is the largest?
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APPLICATION Il: FLOOD PREDICTION




e

5.1 Hurricane Florence Flooding

O Category 4 hurricane: Carolinas on Sep. 14, 2018

.. . ”o. .
O Precipitation exceeded 35" in certain areas

O Caused major flooding and catastrophic damages

10/ 14



5.1 Hurricane Florence Flooding

O Category 4 hurricane: Carolinas on Sep. 14, 2018

.. . ”o. .
O Precipitation exceeded 35" in certain areas

O Caused major flooding and catastrophic damages M
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coastal communities
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5.1 Hurricane Florence Flooding

O Category 4 hurricane: Carolinas on Sep. 14, 2018

.. . ”o. .
O Precipitation exceeded 35" in certain areas

O Caused major flooding and catastrophic damages M

Can we enhance flood
prediction using DA and
available streamflow
models?

~ 50 casualties and $25B losses in
coastal communities
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5.2 WRF-Hydro and DA Configuration

O Interface DART to WRF-Hydro (NOAA’s NWM; Gochis, 2020)
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5.2 WRF-Hydro and DA Configuration

O Interface DART to WRF-Hydro (NOAA’s NWM; Gochis, 2020)

O Total of ~ 70K
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5.3 Streamflow Inflation in Space

Time-Avg. Streamflow Prior Inflation
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5.3 Streamflow Inflation in Space

Time-Avg. Streamflow Prior Inflation
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O Inflation confined in space to the stream network thanks to

Along-The-Stream Localization (El Gharamti et al. 2021)
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5.3 Streamflow Inflation in Space

Time-Avg. Streamflow Prior Inflation

6.9

3

Localization
Factor
1

{

Latitude |
7 35.8 36

36.075

0.9
08
0.7
0.6
0.4
03
0.2
0.1
0

Latitude
35.25

34.

34.425

33.6
33.6

-80 -79 -78 =77
Longitude

w0 79 7
Longitude
O Inflation confined in space to the stream network thanks to

Along-The-Stream Localization (El Gharamti et al. 2021)

O Larger inflation in densely observed watersheds
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5.4 Streamflow Bias Mitigation

Posterior: Sep 17,2018 7:00 PM

After landfall, the model’s streamflow g F%
prediction (Open Loop) is significantly 2 ?}/N
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow
prediction (Open Loop) is significantly
smaller than the posterior along Pee-Dee
River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow

prediction (Open Loop) is significantly

smaller than the posterior along Pee-Dee

River in South Carolina

Hydrograph: Rocky‘ River near Norwood, SC
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5.4 Streamflow Bias Mitigation

After landfall, the model’s streamflow A sizable increase in prior
prediction (Open Loop) is significantly inflation to counter the bias
smaller than the posterior along Pee-Dee in the modeled streamflow!

River in South Carolina
Hydrograph: Rocky River near Norwood, SC
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O Spatially and temporally varying adaptive inflation algorithm

14/ 14



O Spatially and temporally varying adaptive inflation algorithm

O Indispensable in NWP systems: Massive number of available data
cause huge reduction in ensemble spread that need to be restored

14/ 14



O Spatially and temporally varying adaptive inflation algorithm

O Indispensable in NWP systems: Massive number of available data
cause huge reduction in ensemble spread that need to be restored

O Combing prior and posterior inflation can tackle different issues
in the ensemble simultaneously

14/ 14



O
O

Spatially and temporally varying adaptive inflation algorithm

Indispensable in NWP systems: Massive number of available data
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in the ensemble simultaneously

For flood prediction, adaptive inflation is found useful and can
serve as a rigorous bias correction scheme when the model’s
prediction is highly uncertain
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6. Summary

O

~
O

J

Spatially and temporally varying adaptive inflation algorithm

Indispensable in NWP systems: Massive number of available data
cause huge reduction in ensemble spread that need to be restored

Combing prior and posterior inflation can tackle different issues
in the ensemble simultaneously

For flood prediction, adaptive inflation is found useful and can
serve as a rigorous bias correction scheme when the model’s
prediction is highly uncertain

https://dart.ucar.edu/ _
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