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Bayes’ RuleOutline

• Instruments have systematic errors (bias).

• Correcting this bias can improve analyses and forecasts.

• Can estimate the bias as part of ensemble DA.
• Treating instruments with small bias as trusted (no bias):

Can help estimate bias of other instruments,
Can improve analyses and forecasts.

• Assimilating difference of trusted and biased obs is useful.
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Bayes’ RuleEnsemble Kalman Filter Approach

State augmentation: Instrument bias is a state variable.

Each ensemble has its own estimate of bias.

Bias variable is ‘global’:

Has no location, hence no localization of obs impact.

Adaptive inflation to maintain spread.

No model of bias time variation (for now).
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Bayes’ RuleLow-Order Model Exploration

Can learn a lot with linear error growth models:
Kalman Filter is optimal solution,
Even with bias estimation.

Won’t show those results here.
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Bayes’ RuleLorenz-96 Model

Traditional 40-variable configuration for truth, F=8.

Two assimilating models explored:

1. Perfect, same as truth,

2. Enhanced forcing, F=10.

Note: Explored other types of model error. Results robust. 
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Bayes’ RuleEnsemble Kalman Filter Approach

Filter details:

All forward operators are identity.
Observation error variance is 1 for all observations.
Assimilate every 0.05 non-dimensional time units.
80-member ensemble.
Localization for state variables, GC halfwidth 20% of domain.
Space/time varying adaptive inflation for state and bias.

Anderson 2007, standard deviation 0.6, fixed.
1500 assimilation step spin-up.
1000 assimilation steps for results.
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Bayes’ RuleObserving System: Two Instrument Types

Bias 1

Lorenz-96
40 Variables



pg 8

Bayes’ RuleObserving System: Two Instrument Types

Bias 1 Bias 2

Lorenz-96
40 Variables
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Bayes’ RuleObserving System: Two Instrument Types

+2 Bias Unbiased
(Trusted)

Trusted instruments (green) will not have a bias estimated.

Lorenz-96
40 Variables
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Bayes’ RuleFive Cases: 1

Trusted Trusted

Baseline: Two trusted instruments. 

Lorenz-96
40 Variables
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Bayes’ RuleFive Cases: 2

Bias 0 Bias 0

Two instruments with zero bias, but…
Bias is still estimated for each.

Lorenz-96
40 Variables
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Bayes’ RuleFive Cases: 3

Bias +2 Bias +2

Two instruments with +2 bias.

Lorenz-96
40 Variables
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Bayes’ RuleFive Cases: 4

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.

Lorenz-96
40 Variables
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Bayes’ RulePerfect Model: 40 Obs from Each Instrument

Only slight 
degradation for 
state when bias is 
estimated.
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Bayes’ RulePerfect Model: 40 Obs from Each Instrument

Only slight 
degradation for 
state when bias is 
estimated.

Bias estimates 
very accurate.

Size of bias is 
irrelevant.
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Bayes’ RuleF=10 Imperfect Model: 40 Obs from Each Instrument

Hard to distinguish 
between model 
error and 
instrument bias.



pg 17

Bayes’ RuleF=10 Imperfect Model: 40 Obs from Each Instrument

Hard to distinguish 
between model 
error and 
instrument bias.

Having trusted 
instrument helps 
but cannot correct 
all instrument bias.
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Bayes’ RuleFive Cases: 5: Difference Observations

DA challenge:
Trusted obs priors weakly correlated with bias ensemble.
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Bayes’ RuleFive Cases: 5: Difference Observations

Observationalist’s approach:
Why do all this messy DA?
Have collocated trusted and biased obs. 
Just look at the differences at each location.
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Bayes’ RuleFive Cases: 5: Difference Observations

DA Solution:
Assimilate difference of collocated trusted and biased obs.
The priors have a correlation of 1 with bias ensemble!
These have uncorrelated observation errors by definition.

Assimilate the original observations for state ensemble.
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Bayes’ RuleFive Cases: 5: Difference Observations

DA Solution:
Assimilate difference of collocated trusted and biased obs.
The priors have a correlation of 1 with bias ensemble!
These have uncorrelated observation errors by definition.

Assimilate the original observations for state ensemble.

This is essentially a rotation of the forward operator matrix.
Wouldn’t change the answer for a Kalman Filter.
But reduces sampling error in ensemble filter.
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Bayes’ RuleF=10 Imperfect Model: 40 Obs from Each Instrument

Trusted difference 
obs work well 
even with 
combined model 
error and 
instrument bias.
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Bayes’ RuleFive Cases: 5: Difference Observations

DA Solution:
Not so fast.
Used collocated trusted and biased obs of same type.
If we had these, could easily do things off-line.

Can this work for obs with different locations, or types?
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Bayes’ Rule20 Offset Obs from Each Instrument

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.
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Bayes’ Rule20 Offset Obs from Each Instrument: Difference Obs.

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.
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Bayes’ RuleF=10 Imperfect Model: 20 Offset Obs from Each Instrument

Difference obs still 
effective.

Uses model 
correlations for 
relation between the 
obs. 

Errors in 2nd
moment are now a 
concern.



pg 27

Bayes’ Rule4 Trusted Obs, 20 Offset biased Obs

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.
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Bayes’ Rule4 Trusted Obs, 20 Offset biased Obs: Difference Obs

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.
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Bayes’ RuleF=10 Imperfect Model: 4/20 Observations

Difference obs still 
effective.

Only 4 compared to 
20 obs from biased 
instrument. 

Losing 
information?
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Bayes’ Rule1 Trusted Obs, 20 Offset biased Obs

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.
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Bayes’ Rule1 Trusted Obs, 20 Offset biased Obs

Bias +2 Trusted

Instrument with +2 bias.
Trusted Instrument.



pg 32

Bayes’ RuleF=10 Imperfect Model: 4/20 Observations

Difference obs less 
effective.

Better estimate of 
other instruments 
bias.

Effect on state 
variables limited.

Need to use the 
other 19 biased
obs, but correlated 
errors!
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Bayes’ RuleConclusions

1. Ensemble filters can estimate instrument bias.

2. Model error and instrument bias hard to distinguish.

3. Using trusted observations can help.

4. Could extend to use ‘more/less’ trusted instruments.

5. Difference observations can reduce sampling error.

6. This is just a rotation of the forward operator matrix.

7. This technique might have more general applications.
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All results here with DARTLAB tools 
freely available in DART.


