





## BACKGROUND

Ensemble Kalman filters suffer from sampling errors mainly due to small ensemble sizes. Sampling errors often cause: [1] Variance underestimation, [2] Rank deficient covariances  $(N \ll N_x)$  and [3] Noisy and spurious correlations. Strategies to reduce/mitigate sampling errors include *localization* and *inflation*:

$$\widetilde{x}_i \leftarrow \sqrt{\lambda} \left( x_i - \overline{x} \right) + \overline{x}, \qquad \widehat{\sigma}^2 = \lambda \frac{1}{N-1} \sum_{i=1}^N \left( x_i - \overline{x} \right)^2,$$

where  $\lambda > 1$  is an inflation factor and i = 1, 2, ..., N. Adaptive prior [Anderson 2009, El Gharamti 2018] and posterior inflation [Zhang et al. 2004, Whitaker and Hamill 2012, El Gharamti 2019] forms exist. Inflation is quite an effective tool for atmospheric and land applications, however, studies have argued that it could cause numerical instabilities for certain applications such as the ocean.



### **RANDOMIZED DORMANT EnKF**

The Randomized Dormant EnKF (**RD-EnKF**) update step inherently leads to *less spread reduction* than a regular EnKF. The idea is to break down the ensemble each assimilation step into 2 subsets: 1. Active: Members within this subset go through a regular EnKF update, 2. **Dormant:** Members (chosen randomly) within this subset just sit and wait, such that:  $N = N_a + N_d, \quad N_d = \lfloor \alpha N \rfloor \quad \alpha \in [0, 1]$ 

where  $|\cdot|$  denotes the rounding or the nearest integer function and  $\alpha$  is the dormancy rate. When the observations are assimilated serially (as in DART), the dormant subset can change for each observation. **RD-EnKF** cycling procedure is illustrated in Figure 2.

**ODS** #.  $\cdot \Box - \Box - \Box$ Figure 2: RD-EnKF illustration using an ensemble of 15 members. Prior pdf Each colored circle represents a single member. Two available observap(x)tions  $y_1^o$  and  $y_2^o$  are assimilated one af-0 ter the other. The goal is to go from  $\circ$ the prior pdf p(x) to the full analysis  $\bigcirc \bigcirc \bigcirc$ pdf  $p(x|y_1, y_2)$ . The dice on the top arrows indicate random sampling. Kalman  $\bigcirc$   $\bigcirc$   $\bigcirc$ Update **Algorithmic Features:** • Unlike inflation that changes the spread only, *the proposed update affects the probability density function as a whole* • Remains compatible with both localization and prior inflation Obs  $y_1^o$ • Update tends to *de-gaussianize*  $p(x|y_1)$ the analysis pdf – Turth \* Observation — Active Prior Prior Error: 3.545, Posterior Error: 2.632 Dormant Prior EnKF - Ensemble Spread 10 11 12 13 14 4 Time Steps

Figure 3: A 1D example from DART's "DART LAB" tutorial illustrating the behavior of the **RD-EnKF** in a controlled cycling DA system. 10 members are integrated forward in time using a biased nonlinear model. Scalar observations are sampled from the *truth* which is set to 0. The dormancy rate is set to 20% i.e., 2 dormant members (DMs; shown in orange). Overall, the **RD-EnKF** yields better prior and posterior accuracy than the **EnKF** while maintaining sufficient spread. The **EnKF** diverges after  $\sim 10$  cycles. The evolution of the associated pdfs, using 80 members, in time for each scheme are displayed to the right.



# A RANDOMIZED DORMANT ENSEMBLE KALMAN FILTER "An Alternative Look at Sampling Errors" **MOHA GHARAMTI, NCAR**

gharamti@ucar.edu – Boulder, CO

![](_page_0_Figure_17.jpeg)

dent random variables using random draws with different ensemble sizes.  $1/\sqrt{N}$  curve depicts the convergence rate.

https://dart.ucar.edu/

![](_page_0_Figure_20.jpeg)

![](_page_0_Figure_21.jpeg)

![](_page_0_Picture_23.jpeg)

Computational & Information Systems Lab

of 0.2 radians. PS observations are sampled from 300 different sites (randomly selected) with an observation error variance of 1 hPa.

• The randomized dormant EnKF is specifically designed for models that are less tolerant to inflation or those with limited uncertainty growth • Preliminary results show several promising aspects about the **RD-EnKF**: (1) Ability to maintain sufficient ensemble spread after the update (2) Robust performance even in poorly localized domains

(3) Need for less inflation given the inherent spread retention by DMs • More extensive testing with other models (e.g., ocean) will be conducted • Can select the dormant members differently

# REFERENCES

- Anderson, J. L. "Spatially and temporally varying adaptive covariance inflation for ensemble filters." Tellus A: Dynamic meteorology and oceanography 61.1 (2009): 72-83.
- atmospheric sciences, 62(8), 2925-2938.
- view 146.2 (2018): 623-640.

- UCAR/NCAR/CISL/DAReS. http://doi.org/10.5065/D6WQ0202
- assimilation." Monthly Weather Review 140.9 (2012): 3078-3089.
- similation with an ensemble Kalman filter." Monthly Weather Review 132.5 (2004): 1238-1253.

![](_page_0_Picture_47.jpeg)

• Anderson, J. L., Wyman, B., Zhang, S., and Hoar, T. (2005). Assimilation of surface pressure observations using an ensemble filter in an idealized global atmospheric prediction system. Journal of the • El Gharamti, M. "Enhanced adaptive inflation algorithm for ensemble filters." Monthly Weather Re-• El Gharamti, M. et al. "Comparing adaptive prior and posterior inflation for ensemble filters using an atmospheric general circulation model." Monthly Weather Review 147.7 (2019): 2535-2553. • The Data Assimilation Research Testbed (Version 9.16.3) [Software]. (2019). Boulder, Colorado: • Whitaker, J. S. and Hamill T. M. "Evaluating methods to account for system errors in ensemble data • Zhang, F. et al. "Impacts of initial estimate and observation availability on convective-scale data as-