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Ensemble Kalman filters suffer from sampling errors mainly due to small ensemble sizes.
Sampling errors often cause: [1] Variance underestimation, [2] Rank deficient covariances
(N << Nx) and [3] Noisy and spurious correlations. Strategies to reduce/mitigate sam-
pling errors include localization and inflation:

x̃i←
√
λ (xi − x) + x, σ̂2 = λ

1

N − 1

N∑
i=1

(xi − x)2 ,

where λ > 1 is an inflation factor and i = 1, 2, . . . , N . Adaptive prior [Anderson 2009, El
Gharamti 2018] and posterior inflation [Zhang et al. 2004, Whitaker and Hamill 2012, El Gharamti 2019]
forms exist. Inflation is quite an effective tool for atmospheric and land applications, how-
ever, studies have argued that it could cause numerical instabilities for certain applications
such as the ocean.

As a way to avoid numerical instabilities in certain models, is it possible to
retain sufficient ensemble spread without the need for excessive inflation?

Objective

BACKGROUND

The Randomized Dormant EnKF (RD-EnKF) update step inherently leads to less spread reduction
than a regular EnKF. The idea is to break down the ensemble each assimilation step into 2 subsets:
1. Active: Members within this subset go through a regular EnKF update,
2. Dormant: Members (chosen randomly) within this subset just sit and wait, such that:

N = Na +Nd, Nd = bαNe α ∈ [0, 1]

where b·e denotes the rounding or the nearest integer function and α is the dormancy rate. When the observations are assimilated
serially (as in DART), the dormant subset can change for each observation. RD-EnKF cycling procedure is illustrated in Figure 2.

RANDOMIZED DORMANT EnKF

LORENZ ’96 EXPERIMENTS

IDEALIZED ATMOSPHERIC GCM EXPERIMENTS
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Figure 1: Sample correlation of two indepen-
dent random variables using random draws
with different ensemble sizes. 1/

√
N curve de-

picts the convergence rate.

https://dart.ucar.edu/

Figure 2: RD-EnKF illustration us-
ing an ensemble of 15 members.
Each colored circle represents a sin-
gle member. Two available observa-
tions yo1 and yo2 are assimilated one af-
ter the other. The goal is to go from
the prior pdf p(x) to the full analysis
pdf p(x|y1, y2). The dice on the top ar-
rows indicate random sampling.

Algorithmic Features:
•Unlike inflation that changes

the spread only, the proposed up-
date affects the probability density
function as a whole
• Remains compatible with both

localization and prior inflation
•Update tends to de-gaussianize

the analysis pdf
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Figure 3: A 1D example from DART’s "DART LAB" tutorial illustrating the
behavior of the RD-EnKF in a controlled cycling DA system. 10 members are
integrated forward in time using a biased nonlinear model. Scalar observations
are sampled from the truth which is set to 0. The dormancy rate is set to 20%
i.e., 2 dormant members (DMs; shown in orange). Overall, the RD-EnKF yields
better prior and posterior accuracy than the EnKF while maintaining sufficient
spread. The EnKF diverges after ∼10 cycles. The evolution of the associated
pdfs, using 80 members, in time for each scheme are displayed to the right.
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Figure 4: Observing System Simulation Experiments (perfect model) are performed using the L96 model and DART. Cycling is performed every hour using 20 observations distributed
equally throughout the domain. The left panels show time-series plots of RMSE, Spread and Bias of the stochastic EnKF and the RD-EnKF using 20 members. Localization sensitivity
runs are shown for both filters in the middle panels. The right panels show the overall RMSE of each scheme using a fixed localization (cutoff is 0.1) and different ensemble sizes.
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Figure 5: Rank histograms for unobserved variable #32 obtained using the
EnKF and the RD-EnKF (perfect model). The right panels show the RMSE
and Spread for both schemes under imperfect modeling conditions. Spatially
and temporally averaged prior inflation values for each run are also shown.
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•Dynamical core of
the GFDL AM2
Bgrid model
•Minimum resolu-

tion that generates
baroclinic instabil-
ities: 60× 30× 5

• Prognostic vari-
ables: PS, T, U, V
• 1-hr time step (to-

tal of 200 days)
•DART-callable rou-

tine: bgrid_solo
[Anderson et al. 2005]

Figure 6: Time evolution of global-area prior RMSE for PS, T, U and V using the EnKF
and the RD-EnKF; α ∈ [0.5, 0.2]. The ensemble size is set to 20 with a localization cutoff
of 0.2 radians. PS observations are sampled from 300 different sites (randomly selected)
with an observation error variance of 1 hPa.

• The randomized dormant EnKF is specifically designed for models that
are less tolerant to inflation or those with limited uncertainty growth
• Preliminary results show several promising aspects about the RD-EnKF:

(1) Ability to maintain sufficient ensemble spread after the update
(2) Robust performance even in poorly localized domains
(3) Need for less inflation given the inherent spread retention by DMs
•More extensive testing with other models (e.g., ocean) will be conducted
•Can select the dormant members differently
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