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Expanding Earth System Observations
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CLM-DART Methodology
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Improving simulated leaf area and biomass

Western US

Arctic-Boreal BoVE Globe
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Assimilating LAl and biomass observations reduces CLM5 simulated
values

How does this impact component carbon fluxes and net carbon
exchange?
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Impact of leaf/biomass on carbon/water cycle
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Impact of leaf/biomass on carbon/water cycle

Western US Arctic-Boreal CLM5
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Impact of Soil Moisture observations

Correlation w/ ERA5 Near Surface Soil Moisture
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Show observations
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DART Tutorials

Averaging Over Steps (1:8)

——Enmor: 2.93
——Spread: 1.79

MATLAB
DART LAB

An introduction to Data Assimilation using MATLAB
DART_LAB is a MATLAB®-based tutorial to demonstrate the
principles of ensemble data assimilation. The DART_LAB
tutorial begins at a more introductory level than the
materials in the tutorial directory, and includes hands-on
exercises. ...

Fortran

WRF-DART tutorial

Overview The WRF-DART tutorial steps through a WRF-
DART experiment. The experiment covers the continental
United States and uses a 50 member ensemble initialized
from NCEP’s Global Forecast System (GFS) initial
conditions at 2017/04/27 00:00 UTC. ...

Fortran

The DART tutorial

The DART Tutorial is intended to aid in the understanding of
ensemble data assimilation theory and consists of step-by-
step concepts and companion exercises with DART. ...

Fortran

CLM5-DART Tutorial

The CLM5-DART tutorial provides a detailed description of
the download, setup, executation and diagnostic steps
required for a simple global assimilation run using CLMS5. It
is intended to be performed after the completion of the
more general DART tutorial which covers the fundamental
concepts of the Ensemble Kalman Filter used within DART.

https://dart.ucar.edu/tutorials/
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CLM5-DART Tutorial

Downloading, setup,
run, diagnostic steps:

Step 1: Download CLM5

Adding CLM5 SourceMods
Compiling CLM5

Step 2: Download DART

Step 3: Navigating DART Scripts
Step 4: Compiling DART

Step 5: Setting up the atmospheric
forcing

Step 6: Setting up the initial
conditions for land earth system
properties

Step 7: Setting up the observations —
to be assimilated

Step 8: Setting up the DART and
CLM states

Step 9: Set the spatial localization
Step 10: Set the Inflation

Step 11: Complete the Assimilation
Setup

Step 12: Execute the Assimilation
Run

Step 13: Diagnose the Assimilation
Run

Instructions, script examples, and definitions:

In this tutorial we have several observation types that are to be assimilated, including SoIL_TEMPERATURE ,
MODIS_SNOWCOVER_FRAC , MODIS_LEAF_AREA_INDEX and BIOMASS . To enable the assimilation of these observations
types they must be included within the &obs_kind_nml within the input.nml file as:

&obs_kind_nml

assimilate_these_obs_types = 'SOIL_TEMPERATURE',
'MODIS_SNOWCOVER_FRAC',
'MODIS_LEAF_AREA_INDEX',
'BIOMASS',

evaluate_these_obs_types = 'null'

/

Observation Sequence File Variable

observation sequence number

observation value

true observation value

observation quality control

Description

The chronological order of the observation within the observation sequence
file. This determines the order in which the observation is assimilated by DART
for a given time step.

The actual observation value that the DART filter step uses to update the
CLM model. This is derived from the true observation value generated from
CLM model output with uncertainty added.

The observation generated from CLM output. In this case the observation was
generated as part of a perfect model experiment (OSSE; Observing System
Simulation Experiment), thus the ‘true’ value is known.

The quality control value provided from the data provider. This can be used as
a filter in which to exclude low quality observations from the assimilation.
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For more information:
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WACCM-X MPAS_OCN PBL_Id NOAH-MP
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