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Prediction Model

CSU: 8 Sep 2022 pg 2



Prediction Model Observing System
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Observations

…to produce an analysis
(best possible estimate).

+

Observations combined with a Model forecast…
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What is Data Assimilation?



• Analyses and forecasts of state variables.

• Smoothing estimates of state variables.

• Estimate model parameters.

• Estimate model errors.

• Estimate observing system errors.

• Quantitatively design observing systems.

• Estimate external forcing.

• Estimate anything correlated with model/observations.
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A system governed by (stochastic) Difference Equation:

(1)

Observations at discrete times:

(2)

Observational error white in time and Gaussian (nice, not essential). 

(3)

Complete history of observations is: 

(4)

Goal: Find probability distribution for state: 

Analysis Forecast (5)

A General Description of the Forecast Problem 

dxt = f xt ,t( ) +G xt ,t( )dβt , t ≥ 0

yk = h xk ,tk( ) + vk; k = 1,2,...; tk+1 > tk ≥ t0

vk → N 0,Rk( )

Yτ = yl;tl ≤ τ{ }

p x,t |Yt( ) p x,t + |Yt( )
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A General Description of the Forecast Problem 
State between observation times obtained from Difference Equation.
Need to update state given new observations:

(6)

Apply Bayes’ rule:

(7)

Noise is white in time (3), so: 

(8)

Integrate numerator to get normalizing denominator:

(9)

p x,tk |Ytk( ) = p x,tk | yk ,Ytk−1( )

p x,tk |Ytk( ) = p(yk | xk ,Ytk−1 )p(x,tk |Ytk−1 )
p(yk |Ytk−1 )

p yk | xk ,Ytk−1( ) = p yk | xk( )

p(yk |Ytk−1 ) = p(yk | x)p(x,tk |Ytk−1 )dx∫
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A General Description of the Forecast Problem 

Probability after new observation:

Prior (forecast)
Likelihood

(10)

Posterior (analysis).
Denominator just normalization.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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Assumes:
linear model Gaussian noise

Gaussian state 

linear forward operator,

Gaussian observation error

Methods for Solving the Forecast Problem: Kalman Filter

dxt = f xt ,t( ) +G xt ,t( )dβt , t ≥ 0

yk = h xk ,tk( ) + vk; k = 1,2,...; tk+1 > tk ≥ t0

CSU: 8 Sep 2022 pg 12



N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑2

Product of Two Gaussians
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Covariance:

Mean: 

∑ = (∑1
−1+∑2

−1)−1

µ =∑(∑1
−1µ1 +∑2

−1µ2 )

Product of Two Gaussians

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)
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Weight:

We’ll ignore the weight since we immediately normalize products to be PDFs.

Product of Two Gaussians

c = 1
(2∏)d /2 ∑1 +∑2

1/2 exp − 1
2

µ2 − µ1( )T (∑1 +∑2 )
−1 µ2 − µ1( )⎡

⎣
⎤
⎦

⎧
⎨
⎩

⎫
⎬
⎭

Product of d-dimensional normals with means and and

covariance matrices      and is normal.

µ1 µ2
∑1 ∑2

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

Covariance:

Mean: 

∑ = (∑1
−1+∑2

−1)−1
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−1µ1 +∑2
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The Kalman Filter

(10)

Numerator is just product of two Gaussians.

Denominator just normalizes posterior to be a PDF.

p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

(10)p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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The Kalman Filter

(10)p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫

CSU: 8 Sep 2022 pg 18



The Kalman Filter

(10)p x,tk |Ytk( ) = p yk | x( ) p x,tk |Ytk−1( )
p(yk |ξ )p(ξ,tk |Ytk−1 )dξ∫
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Product of d-dimensional normals with means and and

covariance matrices      and is normal.

Covariance:

Mean: 

N (µ1,∑1)N (µ2 ,∑2 ) = cN (µ,∑)

∑ = (∑1
−1+∑2

−1)−1

u = (∑1
−1+∑2

−1)−1(∑1
−1 µ1 +∑2

−1 µ2 )

µ1 µ2
∑1 ∑2

Kalman Filter: Cost Challenges

Must store and invert covariance matrices.
Too big to store for large problems.
Too costly to invert, > O(n2).
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The Ensemble Kalman Filter
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1. Start with ensemble of forecasts.



The Ensemble Kalman Filter
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2. Fit a normal to ensemble.



The Ensemble Kalman Filter
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3. Do standard Kalman filter.



The Ensemble Kalman Filter
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Have continuous posterior; need an ensemble.



The Ensemble Kalman Filter
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4. Can create an ensemble with exact sample mean 
and covariance of continuous posterior.



Schematic of a Sequential Ensemble Filter

Ensemble state 
estimate after using 
previous observation 
(analysis)

Ensemble state 
at time of next 
observation 
(prior)

1. Use model to advance ensemble (3 members here) to time at 
which next observation becomes available.

CSU: 8 Sep 2022 pg 26



Schematic of a Sequential Ensemble Filter

2. Get prior ensemble sample of observation, y = h(x), by 
applying forward operator h to each ensemble member.

Theory: observations 
from instruments with 
uncorrelated errors can 
be done sequentially.

Can think about single 
observation without (too 
much) loss of generality.
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Schematic of a Sequential Ensemble Filter

3. Get observed value and observational error distribution
from observing system.
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Schematic of a Sequential Ensemble Filter

4. Find the increments for the prior observation ensemble                  
(this is a scalar problem for uncorrelated observation errors).
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Schematic of a Sequential Ensemble Filter

5. Use ensemble samples of y and each state variable to linearly 
regress observation increments onto state variable increments.
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Schematic of a Sequential Ensemble Filter

6. When all ensemble members for each state variable are 
updated, integrate to time of next observation …
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Ensemble Kalman Filter Step 1:  Observation Increments
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Ensemble Kalman Filter Step 1:  Observation Increments
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Fit a Gaussian to the sample.

Ensemble Kalman Filter Step 1:  Observation Increments
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Get the observation likelihood.

Ensemble Kalman Filter Step 1:  Observation Increments
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Compute the continuous posterior PDF.

Ensemble Kalman Filter Step 1:  Observation Increments

CSU: 8 Sep 2022 pg 36



Use a deterministic algorithm to ‘adjust’ the ensemble.

Ensemble Kalman Filter Step 1:  Observation Increments
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First, ‘shift’ the ensemble to have the exact mean of the posterior.

Ensemble Kalman Filter Step 1:  Observation Increments
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First, ‘shift’ the ensemble to have the exact mean of the posterior.
Second, linearly contract to have the exact variance of the posterior.

Sample statistics are identical to Kalman filter.

Ensemble Kalman Filter Step 1:  Observation Increments
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Ensemble Kalman Filter Step 2: Update Other Variables

Linear regression of observation increments onto each state variable 
independently (used for parallelism in DART).
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Ensemble Kalman Filter Step 2: Update Other Variables
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Assume that all we 
know is the prior 
joint distribution.

One variable is 
observed.

What should 
happen to the 
unobserved 
variable?
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Ensemble Kalman Filter Step 2: Update Other Variables

Assume that all we 
know is the prior joint 
distribution.

How should the 
unobserved variable be 
impacted?

1st choice: least squares

Equivalent to linear 
regression.

Same as assuming 
binormal prior.
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Ensemble Kalman Filter Step 2: Update Other Variables

Have joint prior 
distribution of two 
variables.

How should the 
unobserved variable be 
impacted?

1st choice: least squares

Begin by finding least 
squares fit.
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Ensemble Kalman Filter Step 2: Update Other Variables

Have joint prior 
distribution of two 
variables.

Next, regress the 
observed variable 
increments onto 
increments for the 
unobserved variable. 

Equivalent to first finding 
image of increment in 
joint space. 
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Ensemble Kalman Filter Step 2: Update Other Variables
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Ensemble Kalman Filter Step 2: Update Other Variables
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Ensemble Kalman Filter Step 2: Update Other Variables
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Ensemble Kalman Filter Step 2: Update Other Variables

Have joint prior 
distribution of two 
variables.

Regression: Equivalent to 
first finding image of 
increment in joint space.

Then projecting from 
joint space onto 
unobserved priors.3
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Ensemble Kalman Filter Step 2: Update Other Variables
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Ensemble Kalman Filter Step 2: Update Other Variables

Now have an updated 
(posterior) ensemble for 
the unobserved variable. 

Fitting Gaussians shows 
that mean and variance 
have changed. 

Other features of the 
prior distribution may 
also have changed.3
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Obs.We’ve expanded this plot. Same 

information as previous slides.
Compressed these two. Compressed these two. 
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Ensemble Kalman Filter Step 2: Update Other Variables

Now have an updated 
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Ensemble Kalman Filter Step 2: Update Other Variables

Now have an updated 
(posterior) ensemble for 
the unobserved variable. 

Fitting Gaussians shows 
that mean and variance 
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Some Error Sources in Ensemble Filters

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation
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Some Error Sources in Ensemble Filters

1. Model error

2. Obs. operator error;
Representativeness

3. Observation error
4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation
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Can be reduced using algorithmic 
extensions like inflation, localization, 
sampling error correction, …



Ensemble Kalman Filter: Conclusions
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Ø Basic Ensemble Kalman Filter is trivial.

Ø Good ensemble filters require inflation, localization, …

Ø ‘Automated’ inflation, localization algorithms exist.

Ø Parallel implementations for 100,000 cores for large models.

Ø Calibration and validation essential.

Ø Hybrids with variational methods.

Ø Other enhancements in the pipeline.



Prediction Model Observing 
System

DART

Analysis

DART provides data assimilation ‘glue’ to build ensemble 
forecast systems for  the atmosphere, ocean, land, …
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Ø A state-of-the-art Data Assimilation System for Geoscience
Ø Flexible, portable, well-tested, extensible, free!
Ø Works with many models.
Ø Works with any observations: Real, synthetic, novel.

Ø A Data Assimilation Research System
Ø Theory based, widely applicable general techniques.
Ø Localization, Sampling Error Correction, Adaptive Inflation, …

Ø Professional software engineering 
Ø Carefully constructed and verified.
Ø Excellent performance.
Ø Comprehensive documentation, examples, tutorials.

Ø People: The DAReS Team
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DART is used at: 

48 UCAR member universities,
More than 100 other sites,

(More than 1500 registered users).
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Ø Works with nearly all NCAR community models 
(dozens of other models, too).

Ø New models can be added in weeks.
Ø Adding new observations is even easier.
Ø Modular: models, observations and assimilation tools 

easily combined.
Ø Enables DA use by prediction scientists.

Doesn’t require assimilation expertise.
Ø Fast & efficient software: laptops to supers.
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Severe weather forecast for two days compared to NWS warnings

• WRF, 10 member ensemble, GFS for boundary conditions
• Continuous operation from April 2015 to December 2017 
• 48 hour forecasts at 3km resolution
• First continuously cycling ensemble system for CONUS
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DART interfaces exist for many components of NCAR’s 
Community Earth System Model:

• Lower atmosphere: CAM-FV, CAM-SE, MPAS
• Upper atmosphere, ionosphere: WACCM, WACCMX
• Atmospheric Chemistry: CAM/Chem
• Ocean: POP
• Land surface / biosphere: CLM
• Sea Ice: CICE
• Weakly coupled DA combinations of the above
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Multiple Component POP/CAM Coupled DA 

Comparisons to 
HADISST and 
HADSLP.

Correlation high 
where observations 
existed.

DART did not 
assimilate SST 
products or 
observations.

Produces competitive 
reanalysis.



Novel Algorithm 1: General Method for Observation Increments
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A : Forecast estimate from model (prior).
p(B|A) : Observation likelihood.
p(A|B) : Analysis (posterior) estimate combines A and B.

DART Tutorial Section 1: Slide 69

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵
=

𝑝 𝐵|𝐴 𝑝 𝐴
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛
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Bayes’ Rule: Combining Forecast with Observation

pg 69
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A : Forecast estimate from model (prior).
p(B|A) : Observation likelihood.
p(A|B) : Analysis (posterior) estimate combines A and B.

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵
=

𝑝 𝐵|𝐴 𝑝 𝐴
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

CSU: 8 Sep 2022

Bayes’ Rule: Combining Forecast with Observation
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A : Forecast estimate from model (prior).
p(B|A) : Observation likelihood.
p(A|B) : Analysis (posterior) estimate combines A and B.

𝑝 𝐴|𝐵 =
𝑝 𝐵|𝐴 𝑝 𝐴

𝑝 𝐵
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Bayes’ Rule: Combining Forecast with Observation
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Bayes’ RuleShould I Worry About Ice Going Down the Hill?

Have 10 forecasts of 
NCAR temperature.

Use Bayes to combine with 
uncertain NCAR 
temperature observation.

CSU: 8 Sep 2022
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Bayes’ RuleShould I Worry About Ice Going Down the Hill?

Original DART: Fit a normal 
to the forecast ensemble.
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Bayes’ RuleShould I Worry About Ice Going Down the Hill?

Bayes product gives 
continuous normal 
posterior.
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Bayes’ RuleShould I Worry About Ice Going Down the Hill?

Get a posterior ensemble.

Until now, we only knew 
how to do this for normal 
distributions.

Normal may work okay for 
applications like NWP.

CSU: 8 Sep 2022
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Bayes’ RuleShould I Worry About Air Quality Going Down the Hill?

Forecast model knows 
ozone must be positive.

Fitting a normal leads to 
probability of negative.

CSU: 8 Sep 2022
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Bayes’ RuleShould I Worry About Air Quality Going Down the Hill?

Doing the DA can lead to 
negative ensemble 
members.

What does that mean? Not 
sure, but nothing good.

Putting these back into 
model to make new 
forecasts is a problem, too.

CSU: 8 Sep 2022
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Bayes’ RuleShould I Worry About Air Quality Going Down the Hill?

Now can do any 
distribution using quantile 
conserving ensemble 
algorithms.

Example: Gamma for 
bounded quantity like 
ozone.

Posterior ensemble no 
longer crazy.

CSU: 8 Sep 2022
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Novel Algorithm 1: Observation Increment Quantile Conserving Filter

DART now provides nearly general solutions for this step
(Anderson, 2022, MWR150, 1061-1074).
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Novel Algorithm 2: Nonlinear constraint-preserving regression

Linear regression can cause inconsistent updates for other variables.
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Problems with Linear Regression of Increments

Contours are correct distribution.

Prior for normal-gamma distribution 
with 100 member ensemble.
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Problems with Linear Regression of Increments

Prior for normal-gamma distribution 
with 100 member ensemble.

Example: Use observation of 
temperature to improve 
estimate of ozone.
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Problems with Linear Regression of Increments

Prior for normal-gamma distribution 
with 100 member ensemble.

Posterior ensemble has 
problems.
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Problems with Linear Regression of Increments

Example regression increment vectors: 
Don’t respect bounds,
Struggle with nonlinearity.

CSU: 8 Sep 2022 pg 84



Solution: Regression of Obs. Increments in Transformed Quantile Space

Doesn’t violate prior PDF constraints like bounds.
Also deals with curvature (nonlinearity).

Crucially important for things like chemical tracers, 
streamflow, sea ice concentration, snow cover,…
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Algorithm

𝑦!
" , 𝑦!#, 𝑥!

", n=1, …N  are prior and posterior (analysis) ensembles of observed 

variable y and unobserved variable x

𝐹$
" and 𝐹%

" are continuous CDFs appropriate for x and y

Φ 𝑧 is the CDF of the standard normal, Φ&' 𝑝 is the probit function
'𝑥!
" = Φ&' 𝐹$

" 𝑥!
" , '𝑦!

" = Φ&' 𝐹%
" 𝑦!

" and '𝑦!# = Φ&' 𝐹%
" 𝑦!# are probit space

∆'𝑦! = '𝑦!# − '𝑦!
" is probit space observation increment

∆'𝑥! =
()!,#
()#,#

∆'𝑦! regress increments in probit space (eq. 5 Anderson 2003)

'𝑥!# = '𝑥!
" + ∆'𝑥! is posterior ensemble in probit space

𝑥!# = 𝐹$
" &' Φ '𝑥!# is posterior ensemble
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Example 2: Normal observed, beta unobserved

Application: Sea ice fraction, bounded between 0 and 1.

CSU: 8 Sep 2022 pg 87



Example 3: Normal observed, binormal unobserved

Application: Convection initiation. Either convection is occurring or it is 
not, partially convecting is not possible. 
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Example 4: Gamma observed, normal unobserved

Application: Impact of tracer observations on free atmosphere 
variables.

CSU: 8 Sep 2022 pg 89



Bayes’ RuleDART is Uniquely Able to Use These New Methods

• Works with DART’s sequential ensemble algorithms.  

• Compatible with existing DART parallel implementation.

• Works with all (dozens) of DART supported models.

CSU: 8 Sep 2022
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Bayes’ RuleImportant for Many High-Impact DA Science Collaborations

Ø Estimating and Predicting Bounded Quantities:
• Atmospheric chemistry,
• Streamflow and flooding,
• Ocean biogeochemistry,
• Sea ice (ASP Postdoc Chris Riedel already pushing forward),
• Snow and land ice,
• Land surface and biosphere,
• Source and sink estimation,

CO2, pollutants,
Accidental/intentional releases,

• Model parameter estimation.

• Non-Gaussian distributions:
• Convection,
• Radiation remote sensing.

CSU: 8 Sep 2022
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Bayes’ RuleDART: The Next Generation

CSU: 8 Sep 2022

Breakthroughs in ensemble DA algorithms being implemented in DART  
provide powerful and unique nonlinear and non-Gaussian capabilities for 
Earth system applications.

Major improvements for:
Tracers / bounded quantities;
Remote sensing observations;
Model parameter estimation.

pg 92



CSU: 8 Sep 2022

Anderson, J., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., Arellano, A., 
2009: The Data Assimilation Research Testbed: A community facility.

BAMS, 90, 1283—1296, doi: 10.1175/2009BAMS2618.1 

https://dart.ucar.edu

DAReS is looking forward to an exciting and busy future 
accelerating science progress with these powerful new methods.

New website!



Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

Given a prior ensemble estimate of an observed quantity, y

CSU: 8 Sep 2022 pg 94



Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

Fit a continuous PDF from an appropriate distribution family
and find the corresponding CDF 

This example uses a normal PDF
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

Compute the quantile of ensemble members;
just the value of CDF evaluated for each member.

This example uses a normal PDF
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

This example uses a normal PDF

Continuous likelihood for this observation.
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

Normal times normal is normal.

Bayes tells us that the continuous posterior PDF is the 
product of the continuous likelihood and prior. 
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

This example uses a normal PDF

Posterior ensemble members have same quantiles as prior. 
This is quantile function, inverse of posterior CDF. 
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Bayes’ RuleApplication 1: Bayesian filtering for an observed variable

For normal prior and likelihood, this is identical to existing 
deterministic Ensemble Adjustment Kalman Filter (EAKF)
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Localization of Quantile (or Probit) Increments: 
Normal-binormal example

Standard increment localization may ignore prior constraints.
Quantile increment localization ‘knows’ prior was binormal.



What about the normal-normal case?

'𝑦!
" = Φ&' 𝐹%

" 𝑦!
" and '𝑦!# = Φ&' 𝐹%

" 𝑦!#

𝐹%
" is for 𝑁𝑜𝑟𝑚𝑎𝑙 𝜇%

", 𝜎%
" *

This means that 𝑦!
" = 𝜎%

" '𝑦!
" + 𝜇%

",     𝑦!# = 𝜎%
" '𝑦!# + 𝜇%

"

Similarly 𝑥!
" = 𝜎$

" '𝑥!
" + 𝜇$

"

Differences are ∆𝑦! = 𝜎%
"∆'𝑦! and ∆𝑥! = 𝜎$

"∆'𝑥!
Covariance 𝜎$,% = 𝜎$

"𝜎%
" '𝜎$,%

Variance 𝜎%,% = 𝜎%
"𝜎%

" '𝜎%,%

The standard increment regression is ∆𝑥! =
)!,#
)#,#

∆𝑦!

Substituting for all terms 𝜎$
"∆'𝑥! =

)!
$)#

$()!,#
)#
$)#

$()#,#
𝜎%
%∆'𝑦!

Cancels to give ∆'𝑥! =
()!,#
()#,#

∆'𝑦!



What about the normal-normal case?

Computing increments in regular space is equivalent to computing increments 
in probit space.

For normal-normal, just do what we have always done (and for any normal in a 
bivariate pair???).

Recall that the QCEFF normal filter in observation space is equivalent to our 
traditional EAKF in observation space.

Similarly, the method here is identical to the EAKF for unobserved updates.

The EAKF is equivalent to the Kalman Filter for normal/Gaussian cases.

The QCEFF normal combined with regression here is an ensemble 
generalization of the EAKF and the Kalman filter.

Caveat: quantile increment localization is NOT the same as standard increment 
localization even in the normal-normal case.



Computational Cost: An Efficient Workflow

Inverting quantile functions can be expensive.
As described, have to do that for each observation/unobs pair.

More efficient workflows are possible; stay in probit space:

1. Compute all forward operators for a window.
2. Compute prior probit for all joint state ensembles.
3. Loop through observations (sequential_obs loop):

a. Invert prior probit for observed variable,
b. Compute posterior for observed,
c. Do probit conversion for posterior obs,
d. Do regression of obs probit increments for each joint unobs,

4. Back to regular space for all state only at the end of all obs

Number of quantile/probit inversions down to one per extended state.


