A Randomized Dormant Ensemble Kalman Filter Sampling Errors: An Alternative Look

• Bluntly: Basic statistics tells us small ensemble sizes just won't cut it

- Bluntly: Basic statistics tells us small ensemble sizes just won't cut it
 - Variance underestimation
 - Rank deficient covariances; N << N_x
 - Noisy and spurious correlations

- Bluntly: Basic statistics tells us small ensemble sizes just won't cut it
 - Variance underestimation
 - Rank deficient covariances; $N \ll N_x$
 - Noisy and spurious correlations
- Too expensive to run with large ensemble sizes; N ≤ 100 is typical

- Bluntly: Basic statistics tells us small ensemble sizes just won't cut it
 - Variance underestimation
 - Rank deficient covariances; N << N_x
 - Noisy and spurious correlations
- Too expensive to run with large ensemble sizes; N ≤ 100 is typical
- Can become even more complex in non-Gaussian and non-linear regimes

Ways to Reduce Sampling Errors

Two major remedies:

1. Localization: Localize the impact of the observations to nearby state variables only (Houtekamer and Mitchell, 2001)

Ways to Reduce Sampling Errors

Two major remedies:

- 1. Localization: Localize the impact of the observations to nearby state variables only (Houtekamer and Mitchell, 2001)
- 2. Inflation: Ensemble state covariance is increased by linearly inflating each scalar component of the state while preserving the mean (Pham et al. 1998):

$$\widetilde{x}_i \leftarrow \sqrt{\lambda} (x_i - \overline{x}) + \overline{x},$$

$$\widehat{\sigma}^2 = \lambda \frac{1}{N-1} \sum_{i=1}^N (x_i - \overline{x})^2,$$

where $\lambda > 1$ is an inflation factor and i = 1, 2, ..., N.

- Adaptive forms (Anderson 2007, 2009; El Gharamti 2018)
- Posterior (El Gharamti 2019), RTPS (Whitaker and Hamill, 2012)

What We Know About Inflation?

- Usually very effective:
 - i. avoids filter divergence
 - ii. improves assimilation quality
 - iii. enhances performance even in biased scenarios

What We Know About Inflation?

- Usually very effective:
 - i. avoids filter divergence
 - ii. improves assimilation quality
 - iii. enhances performance even in biased scenarios
- Frequently used: low-order models and large earth systems e.g., atmosphere (Raeder et al., 2021), land (Raczka et al., 2021)

What We Know About Inflation?

- Usually very effective:
 - i. avoids filter divergence
 - ii. improves assimilation quality
 - iii. enhances performance even in biased scenarios
- Frequently used: low-order models and large earth systems e.g., atmosphere (Raeder et al., 2021), land (Raczka et al., 2021)
- Large inflation can cause issues for ocean models

A global coupled ensemble data assimilation system using the Community Earth System Model and the Data Assimilation Research Testhed

```
Alicia R. Karspeck<sup>1,4</sup> | Gokhan Danabasoglu<sup>1</sup> | Jeffrey Anderson<sup>1</sup> | Svetlana Karol<sup>2</sup> |
Nancy Collins<sup>1</sup> | Mariana Vertenstein<sup>1</sup> | Kevin Raeder<sup>1</sup> | Tim Hoar<sup>1</sup> | Richard Neale<sup>1</sup> |
Jim Edwards<sup>1</sup> | Anthony Craig<sup>3</sup>
```


RD-EnKF Motivation:

As a way to avoid numerical instabilities in certain models, is it possible to retain sufficient ensemble spread without the need for excessive inflation?

RD-EnKF Motivation:

As a way to avoid numerical instabilities in certain models, is it possible to retain sufficient ensemble spread without the need for excessive inflation?

• RD-EnKF update step inherently leads to less spread reduction

RD-EnKF Motivation:

As a way to avoid numerical instabilities in certain models, is it possible to retain sufficient ensemble spread without the need for excessive inflation?

- RD-EnKF update step inherently leads to less spread reduction
- The idea is to randomly break down the ensemble each assimilation step into 2 subsets:
 - Active: Members within this subset go through a regular EnKF update
 - II. Dormant: Members within this subset just sit and wait

$$N = N_a + N_d$$
, $N_d = \lfloor \alpha N \rfloor$ $\alpha \in [0, 1]$

RD-EnKF Motivation:

As a way to avoid numerical instabilities in certain models, is it possible to retain sufficient ensemble spread without the need for excessive inflation?

- RD-EnKF update step inherently leads to less spread reduction
- The idea is to randomly break down the ensemble each assimilation step into 2 subsets:
 - Active: Members within this subset go through a regular EnKF update
 - II. Dormant: Members within this subset just sit and wait

$$N = N_a + N_d$$
, $N_d = |\alpha N|$ $\alpha \in [0, 1]$

• When the observations are assimilated serially (e.g., DART, GSI), the dormant subset can change for each observation

RD-EnKF: 15 members, 2 available observations, $\alpha = 20\%$

obs #1

obs #2

RD-EnKF: Algorithmic Features

- Can be viewed as some form of posterior inflation
- Complexity: it requires random permutations of the ensemble
- Compared to the EnKF, the analysis pdf is not only inflated but rather it's fully modified

RD-EnKF: Algorithmic Features

- Can be viewed as some form of posterior inflation
- Complexity: it requires random permutations of the ensemble
- Compared to the EnKF, the analysis pdf is not only inflated but rather it's fully modified

Experiments using Lorenz'96

L96: Localization Sensitivity

- Without inflation, the most accurate prior estimates are obtained with a cutoff of 0.1 radians and α: 30%
- RD-EnKF performs well even in poorly localized regimes
- Adaptive prior inflation stabilizes the performance and improves the accuracy
- RD-EnKF performance degrades as α increases

L96: Ensemble Size Sensitivty

- Without inflation and N = 10, RD-EnKF outperforms the standard EnKF for all tested dormancy rates
- For N=80, RD-EnKF still outperforms the EnKF using $\alpha \in [5,10]\%$

 With adaptive inflation, the RD-EnKF is only more accurate than the EnKF for small ensemble sizes; N < 20

L96: Comparison to RTPS

• Unlike the RD-EnKF, RTPS update is performed with the entire ensemble and then posterior spread is partially relaxed back to the prior: $\sigma^a \leftarrow \beta \left(\sigma^f - \sigma^a\right) + \sigma^a$

L96: Comparison to RTPS

 Unlike the RD-EnKF, RTPS update is performed with the entire ensemble and then posterior spread is partially relaxed back to the prior: σ^a ← β (σ^f − σ^a) + σ^a

L96: Comparison to RTPS

• Unlike the RD-EnKF, RTPS update is performed with the entire ensemble and then posterior spread is partially relaxed back to the prior: $\sigma^a \leftarrow \beta \left(\sigma^f - \sigma^a\right) + \sigma^a$

- For small ensemble sizes (i.e., $N \le 20$), **RD-EnKF** estimates are less accurate than those obtained with **RTPS**
- Ensemble spread retained by the RD-EnKF is consistently larger than the RTPS

L96: Model Errors

- Without inflation: RD-EnKF is significantly better than the EnKF
- With inflation: Both schemes perform equally well. The RD-EnKF uses less inflation but still yields larger ensemble variability

Summary

- A new method for tackling sampling errors is proposed
- The randomized dormant EnKF (RD-EnKF) is specifically designed for models that are less tolerant to inflation and for regimes with limited uncertainty growth

Summary

- A new method for tackling sampling errors is proposed
- The randomized dormant EnKF (RD-EnKF) is specifically designed for models that are less tolerant to inflation and for regimes with limited uncertainty growth
- Preliminary results in toy models show several promising aspects about the RD-EnKF scheme, particularly:
 - (1) Ability to maintain sufficient ensemble spread after the update
 - (2) Robust performance even in poorly localized domains
 - (3) The need for less inflation given the inherent spread retention by the dormant members

Summary

- A new method for tackling sampling errors is proposed
- The randomized dormant EnKF (RD-EnKF) is specifically designed for models that are less tolerant to inflation and for regimes with limited uncertainty growth
- Preliminary results in toy models show several promising aspects about the RD-EnKF scheme, particularly:
 - (1) Ability to maintain sufficient ensemble spread after the update
 - (2) Robust performance even in poorly localized domains
 - (3) The need for less inflation given the inherent spread retention by the dormant members
- Extensive testing: Ocean DA application
- Different ways to randomly (or not) select the dormant members

