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e Variance underestimation
e Rank deficient covariances; N << N,
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Ways to Reduce Sampling Errors

Two major remedies:

1. Localization: Localize the impact of the observations to
nearby state variables only (Houtekamer and Mitchell, 2001)




Ways to Reduce Sampling Errors

Two major remedies:
1. Localization: Localize the impact of the observations to
nearby state variables only (Houtekamer and Mitchell, 2001)

2. Inflation: Ensemble state covariance is increased by linearly
inflating each scalar component of the state while preserving

the mean (Pham et al. 1998) :
X o= VA —X)+ %,

o = ALZ(X,—Q)%

where A > 1 is an inflation factor and i =1,2,..., N.

e Adaptive forms (Anderson 2007, 2009; El Gharamti 2018)
e Posterior (EI Gharamti 2019), RTPS (Whitaker and Hamill, 2012)
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i. avoids filter divergence
ii. improves assimilation quality
iii. enhances performance even in biased scenarios
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What We Know About Inflation?

o Usually very effective:
i. avoids filter divergence
ii. improves assimilation quality
iii. enhances performance even in biased scenarios

e Frequently used: low-order models and large earth systems
e.g., atmosphere ( ), land ( )

e Large inflation can cause issues for ocean models
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fQRD-EnKF Motivation:

As a way to avoid numerical instabilities in certain models, is it
possible to retain sufficient ensemble spread without the need for
excessive inflation?

e RD-EnKF update step inherently leads to less spread reduction

e The idea is to randomly break down the ensemble each assimilation
step into 2 subsets:

I. Active: Members within this subset go through a regular EnKF
update
Il. Dormant: Members within this subset just sit and wait

N=N,+ Ny, Ny=l|aN] «ac€l0,1]

e When the observations are assimilated serially (e.g., DART, GSI),
the dormant subset can change for each observation

NCAR

UCAR



Method lllustration
RD-EnKF: 15 members, 2 available observations, o = 20%
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Method lllustration

RD-EnKF: 15 members, 2 available observations, o = 20%
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A Scalar Example
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A Scalar Example

10 members, biased linear model, EnKF vs RD-EnKF (o = 10%)
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A Scalar Example

10 members, biased & nonlinear model, EnKF vs RD-EnKF (o = 20%)

Prior Error: 3.545, Posterior Error: 2.632
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RD-EnKF: Algorithmic Features

e Can be viewed as some form of posterior inflation

e Complexity: it requires random permutations of the ensemble

e Compared to the EnKF, the analysis pdf is not only inflated
but rather it's fully modified
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Prior Diagnostics

Prior Diagnostics
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L96: Localization Sensitivity

No Inflation

e Without inflation, the most accurate
prior estimates are obtained with a
cutoff of 0.1 radians and « : 30%
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L96: Ensemble Size Sensitivty

No Inflation Case
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L96: Comparison to RTPS

e Unlike the RD-EnKF, RTPS update is performed with the entire ensemble and
then posterior spread is partially relaxed back to the prior: ¢? < 3 (cr'r - 0’3) +o?




L96: Comparison to RTPS

e Unlike the RD-EnKF, RTPS update is performed with the entire ensemble and
then posterior spread is partially relaxed back to the prior: 0° < 38 (0 — ¢°) + o?

RD-EnKF EnKF with RTPS

25 25

Dormant Members (%)
@
Prior RMSE

Spread Weighting Factor

05
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
Ensemble Size Ensemble Size

0.5




L96: Comparison to RTPS

e Unlike the RD-EnKF, RTPS update is performed with the entire ensemble and
then posterior spread is partially relaxed back to the prior: ¢? < 3 (cr'r - 0’3) +o?
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e For small ensemble sizes (i.e., N < 20), RD-EnKF estimates are less accurate
than those obtained with RTPS

e Ensemble spread retained by the RD-EnKF is consistently larger than the RTPS




Model Errors
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e Without inflation: RD-EnKF is significantly better than the EnKF

e With inflation: Both schemes perform equally well. The RD-EnKF uses less
inflation but still yields larger ensemble variability
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e A new method for tackling sampling errors is proposed

e The randomized dormant EnKF (RD-EnKF) is specifically designed
for models that are less tolerant to inflation and for regimes with
limited uncertainty growth
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Summary

A new method for tackling sampling errors is proposed

The randomized dormant EnKF (RD-EnKF) is specifically designed
for models that are less tolerant to inflation and for regimes with
limited uncertainty growth

Preliminary results in toy models show several promising aspects

about the RD-EnKF scheme, particularly:

(1) Ability to maintain sufficient ensemble spread after the update

(2) Robust performance even in poorly localized domains

(3) The need for less inflation given the inherent spread retention by the
dormant members

Extensive testing: Ocean DA application

Different ways to randomly (or not) select the dormant members
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