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1. The Data Assimilation Research Testbed (DART)

The Data Assimilation Research Testbed (DART) is a community
facility for ensemble data assimilation developed and maintained at
the National Center for Atmospheric Research (NCAR). DART pro-
vides data assimilation (DA) capabilities for nearly all NCAR com-
munity earth system models and many other models.

The DART website (https://dart.ucar.edu) includes documenta-
tion, tutorials, and examples of DART use and a list of DART pub-
lications and presentations.

2. Original DART Ensemble DA Algorithms

The schematic in Fig. 2.1 shows how DART implements ensem-
ble DA. The default DART algorithms assume a normal distribution
for step III (this is the ensemble adjustment Kalman filter; EAKF)
and use linear regression for step IV. This poster discusses quan-
tile conserving ensemble filters for step III that can assume arbi-
trary distributions for the prior and the observation error, and pro-
bit transformed quantile regression methods for step IV that allow
much more general regression for computing state increments.

Figure 2.1: The DART assimilation framework. A model makes an ensemble
of forecasts (green arrows) valid at the next time at which observations will be
assimilated in step I. Observations for that time are assimilated one at a time.
The expected values of an observation for each ensemble (green ticks, top left)
are computed using a forward operator function (h) in step II. Ensemble incre-
ments for the observed quantity (blue vectors, upper right) are computed in step
III. Step IV linearly regresses the observation increments onto each state vari-
able; increments for all state variables can be computed in parallel.

3. Quantile Conserving Ensemble Filters

Quantile conserving filters provide a very general method of com-
puting increments for the prior ensemble of an observed quantity
(step III, Fig. 2.1). The algorithm is illustrated in Figs. 3.1 and
3.2. This example uses a simple normal distribution which repro-
duces the existing DART EAKF. Figure 3.3 shows the impact of
using different continuous prior PDFs for the same ensemble. Fig-
ure 3.4 shows an example for a doubly bounded quantity (sea ice
fractional coverage is a physical example) using a beta prior PDF
and a beta observation likelihood. Quantile conserving filters are
especially useful for bounded quantities like tracer concentrations,
depths of things like snow or ice, and estimating model parameters
that have a restricted range. Figures 3.3 and 3.4 are reproduced
from Anderson (2022, https://doi.org/10.1175/MWR-D-21-0229.1)
which also provides a table of dozens of continuous PDF families
for which it is straightforward to compute the posterior PDF.

Figure 3.1: Part I of a quantile conserving ensemble filter for a continuous nor-
mal probability distribution function (PDF). In the top panel, a continuous PDF
(green curve) is fit to a prior observation ensemble (green asterisks). In the bot-
tom panel, the corresponding cumulative distribution function (CDF, green curve)
is used to compute the quantile (black asterisks) of each ensemble member.

Figure 3.2: Part II of a quantile conserving ensemble filter. In the top panel,
the product of the continuous prior PDF and a continuous observation likelihood
(red curve) is computed to give the continuous posterior PDF (blue curve). In
the bottom panel, the corresponding posterior CDF (blue curve) is used to invert
the prior quantiles to get the posterior ensemble (blue asterisks).

Figure 3.3: A 10-member prior ensemble is indicated by the black asterisks
below the top panel. Continuous prior (top) and analysis (bottom) distributions
for this ensemble are shown for an EAKF, a rank histogram filter (RHF), and a
kernel filter with kernel variance set to 10% of the ensemble variance. (middle) A
continuous normal likelihood used for the EAKF and the kernel filter with mean 1
and variance 1, and the RHF piecewise constant approximation are shown. As-
terisks mark the analysis ensembles for the EAKF, RHF, and kernel filter below
the analysis (from top to bottom, respectively). In this example the ensemble is
roughly normal so all methods give similar analysis ensembles.

Figure 3.4: A 10-member prior ensemble drawn from a beta distribution with
both shape parameters a and b of 0.5 is indicated by black asterisks below the
top panel. A continuous beta prior fit to this ensemble (top), a beta likelihood
with a = 2 and b = 5 (middle), and the corresponding analysis beta PDF (bot-
tom). Asterisks mark the analysis ensemble below the analysis distribution. The
fifth and sixth smallest ensemble members have nearly the same values and are
difficult to distinguish.

4. Probit Transformed Quantile Regression

While quantile conserving algorithms for step III lead to signif-
icant improvements in analysis estimates for observed variables,
those improvements can be lost when using standard linear re-
gression of observation increments to update other state variables
in step IV. However, doing the regression of observation quantile
increments in a probit-transformed, bivariate, quantile space guar-
antees that the posterior ensembles for state variables also have
all the advantages of the observation space quantile conserving
posteriors. For example, if state variables are bounded, then pos-
terior ensembles will respect the bounds. The posterior ensembles
also respect other aspects of the continuous prior distributions.

The new algorithm computes the quantiles of each ensemble
member for both the observed variable and state variable (same as
for observed ensemble in Section 3). The quantiles are bounded
between 0 and 1. The quantiles are then further transformed to an
unbounded domain by applying the probit function, the inverse of
the standard normal CDF. The regression of the observation incre-
ments is done in this transformed space. The transformations are
then inverted to get the posterior ensemble of the state variable.

Figure 4.1 illustrates some of the problems of using linear regres-
sion when a state variable has a distribution that is not normal. In
this case, the state variable is non-negative, but linear regression
leads to negative posterior ensemble members. Figure 4.2 shows
how the new method improves the posterior ensemble. Figure 4.3
compares linear regression to the new method for a binormal state
variable distribution.

Figure 4.1: Green asterisks show an 80-member ensemble drawn from a bi-
variate distribution with a normally distributed observation (horizontal axis) and
a gamma distributed state variable (non-negative, vertical axis). The red normal
PDF is an observation likelihood. The least squares line for the ensemble is
dashed black and increments using linear regression are shown in blue for 10
selected ensemble members. The regression can lead to meaningless negative
tracer concentration.

Figure 4.2: The posterior ensemble for the prior in Fig. 4.1 for standard re-
gression (blue asterisks) and probit transformed quantile regression (cyan as-
terisks) superimposed on the shaded posterior PDF. The probit transformed
quantile regression respects the bounds and is more consistent with the entire
posterior.

Figure 4.3: Prior (top) and posterior (bottom) ensembles for a normally dis-
tributed observed variable and a binormally distributed state variable. Standard
regression results in many posterior members that are in neither high probability
area; the new method is much more consistent with the posterior.

Inflation and localization, methods that improve the quality of en-
semble DA, can also negate the advantages of the quantile con-
serving method. However, both localization and inflation can be
done in the probit transformed quantile space as shown in Figs.
4.4 and 4.5.

Combining these new methods for steps III and IV can signif-
icantly improve data assimilation for non-Gaussian quantities in
Earth system models.

Figure 4.4: The result of applying increment localization for the state variable
in Fig. 4.3. For both panels, the 80-member prior ensemble is plotted for lo-
calization 0, and the unlocalized posterior ensemble for localization 1. Standard
DART localization (left) can lead to many ensemble members near 0; between
the two high probability areas; see for instance the ensemble for localization 0.5.
Localizing the increments in the probit transformed quantile space (right) avoids
this deficiency. Ensemble members ‘skip across’ the low probability region as
localization is increased.

Figure 4.5: The result of applying inflation to the prior state ensemble in Fig.
4.1. The standard DART inflation results in negative ensemble members that
make no sense (left). Applying inflation in the probit transformed quantile space
avoids negative members while still generating additional spread (right).

5. DA in an Idealized Tracer Transport Model

DART now includes a low-order model of tracer transport for test-
ing DA algorithms for bounded quantities. The model is an ex-
tension of the Lorenz-96 model that has been widely used for DA
evaluation. Each gridpoint has the standard Lorenz-96 state, plus
a tracer concentration and a tracer source/sink. A multiple of the
state values are treated as a wind field at each gridpoint and used
to advect the tracer. Figure 5.1 shows a time series of the wind field
and Fig. 5.2 shows the corresponding tracer concentration. There
is a single time constant tracer source at gridpoint 1 and a smaller
sink at all other gridpoints. The wind is more often positive than
negative and plumes of tracer propagate to the right across the
domain. Sometimes the wind reverses leading to shorter plumes
heading to the left. The tracer concentration is often exactly zero
in some parts of the domain far from the source.

Figure 5.1: Time series of idealized winds from the Lorenz-96 tracer ad-
vection model. These winds are just the value of the standard state variables
multiplied by a constant.

Figure 5.2: Time series of tracer concentration from the Lorenz-96 tracer ad-
vection model. There is a constant point source of tracer at gridpoint 1 and a
constant small sink at all other points. Tracer is advected using an upstream
semi-Lagrangian scheme with the winds in Fig. 5.1.

Figure 5.3: A time series of the ensemble analysis estimate of tracer at two
gridpoints using DART’s standard EAKF. The state (wind) and tracer concentra-
tion are observed at each grid point.

Figure 5.4: As in Fig. 5.3, but using a quantile conserving filter and probit
transformed quantile regression. All prior distributions are bounded normal rank
histograms. This method avoids bias due to the bounded nature of the tracer
and is able to have all ensemble members go to zero when appropriate.

6. Try It

These new algorithms extend the capabilities of ensemble DA
to general non-Gaussian and nonlinear distributions. Transforma-
tive improvements in DA can result for many applications. Largest
improvements are found for bounded variables like tracer concen-
tration, snow and ice depth, soil moisture, and similar quantities in
other parts of the Earth system. Model parameters can also be
estimated with DA and large improvements can occur for bounded
parameters. Variables that have distinctly non-Gaussian prior dis-
tributions can also see large improvements. Examples can include
atmospheric quantities like moisture and cloud amount in the pres-
ence of convection, and many land surface variables.

A DART release, that includes the algo-
rithms described here and the idealized tracer
model, is now available at the QR code
(https://github.com/NCAR/DART/releases/tag/
v11.0.0-alpha). Contact dart@ucar.edu
with questions or if you would like to ex-
plore collaborations using these new al-

gorithms. A description of the quantile conserving ensem-
ble filter is available at the MWR link in Section 3 and in
https://docs.dart.ucar.edu/en/quantile methods/README.html.
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