Ensemble filtering for meso- and convective-scale assimilation

- Chris Snyder MMM/DAI Co–PI
Meso- and convective scale DA

- Lots of obs, but
 - Only certain variables, certain levels
 - Asynoptic and (very) spatially inhomogeneous
- A priori relations among variables absent or weak (e.g. geostrophic balance)
- Phenomena are intermittent with coherent spatial structure (fronts, vortices, convective organization)
- Short time scales make probabilistic forecasts crucial
• Thus, need DA scheme that
 – Uses covariances that incorporate dynamical info from eqns of motion
 – Handles asynoptic obs gracefully, together with wide spatial/temporal variations in obs network
 – Returns info on analysis uncertainty, for use in IC’s for ensemble forecasts
• For research, also nice to minimize devel. effort
• Ensemble filters can potentially fulfill these reqs
• Short range f/c for meso- and convective scales is frontier of NWP; large potential societal benefits
• Assimilation for these scales largely untried. Existing forecasts have significant initial spin up/down.
• Research complements present operational efforts.
Initial studies with the EnKF

- Convective scale, using Doppler radar obs
 - Snyder and Zhang (2003): simulated obs
Initial studies with the EnKF

• Convective scale, using Doppler radar obs
 – Snyder and Zhang (2003): simulated obs

• PBL and surface obs

• Limited–area domains, dx < 100 km
 – Caya and Snyder, ongoing
WRF/DART Development

- Have prototype system (Caya, Skamarock, Rizvi, Snyder)
- Capable of updating nested domains
- In use within NCAR
 - Caya: retrieve low-level winds from clear-air radar returns
 - Hacker: assimilation of surface obs in complex terrain
 - Caya/Barker/Snyder: tests on CONUS domain, comparison with WRF 3DVar
- Initial tests by university collaborators underway
 - Dowell (OU/CIMMS), Zhang (Texas A&M), Hamill (CU/CIRES)
OSSE’s in WRF/DART

- “True” solution from WRF simulation using AVN analyses + perturbations as IC’s and LBC’s
- 9000 km x 9000 km, CONUS domain; dx = 200 km
- Simulated radiosondes: every 12h at locns of NA network
- 20 members, localization radius ~ 2000 km
- IC’s and LBC’s for each member also AVN analyses + perturbations
- Perturbations for IC’s, LBC’s are scaled deviations from approximate climatology
- Standard, deterministic/square-root filter
OSSE Results

Blue: LBCs uncertain
Red: perfect LBCs
Real-data Expts in WRF/DART

- Domain, resolution as in OSSE’s
- Ensemble-mean LBC’s from AVN analyses
- Each member’s LBC perturbed using scaled deviations from climo
- Filter details as in OSSE’s
- Every 6h, assimilate radiosondes, ACARS, satellite winds
Results from Real-Data Expts

RMSE

Time interval
(number of 6h cycles)

T fit to RAobs 0500mb NH (background)
Results from Real-Data Expts

WRF/DART EnKF background
AVN analysis

Valid 0Z 10 Jan 10 (10 days cycling)
Next steps and near–term issues

• Comparison w/ WRF 3DVar
• Use of perturbations drawn from N(0,B), w/ B = 3DVar covariance model
• Quantify level of gravity–wave activity in analyses and forecasts. Do we need to initialize?
• Use of observation across multiple domains/resolutions. Should characteristics of localization vary?
• Identification of model biases
Opportunities from DART

- Capitalize on development of obs operators (e.g. GPS occultation)
- Capitalize on EnKF products from other systems (e.g. LBC’s from CAM EnKF)
- Focus for improvements and refinements in filtering techniques
Challenges for DART

• Effective assimilation of reflectivity
• Lateral boundary conditions and nested domains