Introduction to Ensemble Filters
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> a Bayesian view of data assimilation

> overview of ensemble filters




Data Assimilation via Bayes Rule

True state is unknown
> observations, models both have random errors

> probability density of z*, [z!], is most that can be determined

Example: two obs with known error distributions
> y; = xt + ¢, with [¢;] known

Wish to calculate [z"|y1 = y{, y2 = ¥3]
> Bayes rule
[ y1, y2] o [yo|a*, 3a][a* 3]
> if obs errors independent, [y2|zt, 11] = [y2|z!]



Bayes lllustrated

> [zt|y1] for y§ = 1.1 (blue)
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Bayes
> [zt

> [y2

llustrated (cont.)

1] for y{ = 1.1 (blue)

z'] for y§ = 0.75 (red)
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Bayes lllustrated (cont.)
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y1] for y{ = 1.1 (blue)
z'] for y§ = 0.75 (red)
Y1, Y2] o< [yaz*][z*|y1] (black)




Many variables

Notation

> X = state w.r.t. discrete basis, e.g. grid-point values or Fourier
coefficients

> wish to estimate x*, true state projected onto discrete basis

Available information, typically
> new observations

> recent forecast of x*: for NWP, often as accurate as obs

> approximate balance relations, such as geostrophy

Need covariance matrices for forecast (P?) and obs (R)



Importance of Forecast Covariances

> 2D: x = (21, z2)

> forecast
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Importance of Forecast Covariances

> observation, y = x1 + noise = 1.4

> observation likelihood independent of x5
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Importance of Forecast Covariances

> analysis

> Cov(x1,z2) provides information on unobserved variable
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EnKF Sketch

Monte-Carlo approach (samples vs. distributions)
> estimate covariances from ensemble of forecasts
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Given ensemble at t = #g,

> forecast each member to #x.1, time of next observations
> update each member at £;4

> continue as above, from t =t



Ensemble Size

Doesn’'t ensemble need to be huge?
> N; > 0(10°) > N, < 0(10%)

e

> P'i\c extremely rank deficient

> but, errors only O(Ne_uz) in each element.

Dynamics reduce effective dimensionality
> variance grows in some directions, decays in most

> P/ has a few large eigenvalues

Covariance localization
> typically, distant pts have small covariance, so hard to estimate

> allow each observation to influence analysis only locally

: ~f . .
> increases rank of P° and decreases detrimental effects of sampling
errors, yet decreases computational cost



Attractions of the EnKF

1. Covariances incorporate information from dynamics

2. Ease of implementation
> simple algorithm, relatively independent of model
> no linearized or adjoint models

> forecasts, at least, are highly parallel

3. Provides estimates of f/c and analysis uncertainty

> natural foundation for ensemble forecasting system

4. Parameter estimation i1s convenient

> include models parameters in extended state vector



Update Step: Schematic Radar Example

Update w given an observation of v,

v (mvs)
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a) forecast ensemble and obs.

b) wpdated ensemble

> let vf = Hx/; compute for each member

> For each grid point %, estimate from ensemble
d=HP/HT + R = Var(v/) +R

¢; = (PTHT); = Cov(w/, v)),

> update each member at ith grid point,
wt = w! + (& /d)(v, — v/ +€) €~ N(0,R)
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