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Ensemble Filters for Geophysical Data Assimil

Jeffrey Anderson
NCAR Data Assimilation Initiat

Objective: Provide a simple but clear introductio

Phase 1: Single variable and observation of

Phase 2: Single observed variable, single un

Phase 3: Generalize to geophysical models

Phase 4: Quick look at a real atmospheric a
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Consistent Color Scheme Througho

Green = Prior

Red = Observation

Blue = Posterior
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Bayes rule:

This product is closed for Gaussian distribution
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

N µ1 Σ1,( )N µ2 Σ2,( ) cN µ Σ,( )=
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

We’ll ignore the weight unless noted since we im
products to be PDFs.
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Product of two Gaussians:

Product of d-dimensional normals with meansµ1 an
covariance matricesΣ1 andΣ2 is normal.

Covariance:

Mean:

Weight:

Easy to derive for 1-D Gaussians; just do produ
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Bayes rule:

This product is closed for Gaussian distribution

There are other families of functions for which i
But, for general distributions, there’s no analytic
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Bayes rule:

This product is closed for Gaussian distribution

There are other families of functions for which i
But, for general distributions, there’s no analytic
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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a continuous (Gaussian for now) distribution

p A BC( )
p B AC( ) p A C( )

p B C( )
------------------------------------------

p B(
p∫ B(

----------= =

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y

Prior PDF



1/19/05

ly always Gaussian).

e methods below.
obs. likelihood.

AC) p A C( )
x)p x C( )dx

---------------------------------

2 4

bs. Likelihood
Anderson: Ensemble Tutorial 19

Bayes rule:

Observation likelihood usually continuous (near

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 
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Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.

p A BC( )
p B AC( ) p A C( )

p B C( )
------------------------------------------

p B(
p∫ B(

----------= =

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y

Prior PDF

O

Posterior PDF



1/19/05

nclear.
rform.
, etc.

2 3
Anderson: Ensemble Tutorial 21

Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be u
Trial and error still best way to see how they pe
Will interact with properties of prediction models
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Sampling Posterior PDF:

1. Just draw a random sample.
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Sampling Posterior PDF:

1. Just draw a random sample.

Can ‘play games’ with this sample to improve (m

Example: Adjust the mean of sample to be exa

−2 −1 0 1
0

0.2

0.4

0.6
Posterior PDF

P
ro

ba
bi

lit
y

Random Sample; Exact Mean



1/19/05

odify) its properties.

ct.
act.

2 3

r.
Anderson: Ensemble Tutorial 24

Sampling Posterior PDF:

1. Just draw a random sample.

Can ‘play games’ with this sample to improve (m

Example: Adjust the mean of sample to be exa
Can also adjust the variance to be ex
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Sampling Posterior PDF:

1. Just draw a random sample.

Might also want to eliminate rare extreme outlie

NOTE: Properties of these adjusted samples ca
How these properties interact with rest of assim
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Sampling Posterior PDF:

2. Construct a ‘deterministic’ sample with certai

For instance: Sample could have exact mean a

This is insufficient to constrain ensemble, ne
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Sampling Posterior PDF:

2. Construct a ‘deterministic’ sample with certai

Example: Exact sample mean and variance.
Sample kurtosis is 3 (expected value for Gaussi
(Constructed by starting uniformly spaced and a
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Sampling Posterior PDF:

2. Construct a ‘deterministic’ sample with certai

Example: Exact sample mean and variance.
Sample kurtosis 2: less extreme outliers, less d
Avoiding outliers might be nice in certain applic
Sampling heavily near mean might be nice.
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Sampling Posterior PDF:

First two methods depend only on mean and va

Example: Suppose prior sample is (significantly
−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y



1/19/05

riance of prior sample.

) bimodal?

 prior.

2 4

bs. Likelihood

ble
Anderson: Ensemble Tutorial 30

Sampling Posterior PDF:

First two methods depend only on mean and va

Example: Suppose prior sample is (significantly

Might want to retain additional information from
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Compute posterior PDF (same as previous algo
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o

−4 −2 0
0

0.2

0.4

0.6

P
ro

ba
bi

lit
y

Posterior PDF

Mean Shifted



1/19/05

.
f posterior.
t variance of posterior.

2 4
Anderson: Ensemble Tutorial 36

Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Use deterministic algorithm to ‘adjust’ ensemble
First, ‘shift’ ensemble to have exact mean o
Second, use linear contraction to have exac
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

    i = 1,..., ensemb

p is prior,      u is update (posterior),    overbar i
σ is standard deviation.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

Bimodality maintained, but not appropriately po
No problem with random outliers.
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Ensemble Filter Algorithms:

3. Ensemble Adjustment (Kalman) Filter.

There are a variety of other ways to determinist
Class of algorithms sometimes called determin
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

‘Classical’ Monte Carlo Algorithm for Data Assi

Warning: earliest refs have incorrect algorithm (
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Again, fit a Gaussian to sample.
Are there ways to do this without computing pri
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Generate a random draw from the obs. likelihoo
Associate it with the first sample of prior ensem
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.
This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.’ en
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.
This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.’ en
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Proceed to associate a random draw from obs.
Earliest publications associated mean of obs. lik

This resulted in insufficient variance in poste
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Have sample of joint prior distribution for observ
Adjusting the mean of obs. sample to be exact 
Adjusting the variance may further improve per
Outliers are potential problem, but can be remo
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

For each prior mean/obs. pair, find mean of pos
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Prior sample standard deviation still measures uncerta
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Prior sample standard deviation still measures uncerta

Obs. likelihood standard deviation measures uncert
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Take product of the prior/obs distributions for fir
This is standard Gaussian product.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Mean of product is random sample of posterior.
Product of random samples is random samp
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

4. Ensemble Kalman Filter (EnKF).

Posterior sample maintains much of prior samp
(This is more apparent for larger ensemble s

Posterior sample mean and variance converge to
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Can retain more correct information about non-
Can also be used for obs. likelihood term in pro
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Usually, kernel widths are a function of the sam
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Usually, kernel widths are a function of the sam
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Estimate of prior is normalized sum of all kerne
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Apply distributive law to take product.
Product of sum is sum of products.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Compute product of first kernel with Obs. Likelih
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

But, can no longer ignore the weight term for pr
Kernels with mean further from observation get
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
More distant kernels have small impact on post
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
More distant kernels have small impact on post
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
More distant kernels have small impact on post
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
Closer kernels dominate posterior.

−4 −2 0
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

O



1/19/05

n.
2 4

bs. Likelihood
Anderson: Ensemble Tutorial 77

Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Continue to take products for each kernel in tur
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Final posterior is weight-normalized sum of kern

Posterior is somewhat different than for ensemb
ensemble Kalman filter (much less density i
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Ensemble Filter Algorithms:

5. Ensemble Kernel filter.

Forming sample of the posterior can be problem
Random sample is simple.
Deterministic sampling is much more tricky here
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Ensemble Filter Algorithms:

6. Particle filter methods:

These are ‘classical’ ensemble methods from s

Size of ensembles required scales hyper-expon

Ensembles > 1000 required for models with > 4

This rules out naive application to any meaning

At present, nobody knows ways to attack this s
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Phase 2: Single observed variable, single uno

So far, have known observation likelihood for si

Now, suppose prior has an additional variable.

Will examine how ensemble methods update ad

Basic method generalizes to any number of add

Methods related to Kalman filter in some sense
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state

Assum
is prio

One v

Updat
variab
previo

3
3.5

4
4.5

5

U
no

bs
.

−2 0 2 4
Observed Variable



1/19/05

 variables

e that all we know
r joint distribution.

ariable is observed.

e observed
le with one of
us methods.
Anderson: Ensemble Tutorial 84

Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state

Have 
distrib
variab

Next, 
obser
increm
increm
unobs

Equiv
image
joint s

3

3.5

4

4.5

5

U
no

bs
er

ve
d 

S
ta

te
 V

ar
ia

bl
e

−2 0 2 4
Observed Variable

Increments



1/19/05

 variables

joint prior
ution of two
les.

ssion: Equivalent to
ding image of
ent in joint space.

projecting from
pace onto
erved priors.

, multiply by prior
le correlation.
Anderson: Ensemble Tutorial 99

Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state
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Ensemble filters: Updating additional prior state

Two primary error sources:

1. Linear approximation is invalid.
Substantial nonlinearity in ‘true’ relation 

2. Sampling error due to noise.
Even if linear relation, sample regression

May need to address both issues for good perfo
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Nonlinear relations between variables; sorting i
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Nonlinear relations between variables; sorting i
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Nonlinear relations between variables; sorting i
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Nonlinear relations between variables; sorting i
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Nonlinear relations between variables; sorting i
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Nonlinear relations between variables: Local re
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Nonlinear relations between variables; Local re
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Nonlinear relations between variables; Local re
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Nonlinear relations between variables; Local re
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Regression sampling error and filter divergence

Suppo
state v
be un
obser

Unobs
should
uncha

−3

−2

−1

0

1

2

3

U
no

bs
er

ve
d 

S
ta

te
 V

ar
ia

bl
e SD=0.88

MN=0.12

−2 0 2
Observed Variable



1/19/05

se unobserved
ariable is known to

related to set of
ved variables.

samples from joint
ution will have
ero correlation
cted |corr| = 0.19
 samples).

ne observation,
. variable mean and
hange.
Anderson: Ensemble Tutorial 123

Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Regression sampling error and filter divergence
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Ways to deal with regression samplin

1. Ignore it: if number of unrelated observations
and there is some way of maintaining varian

2. Use larger ensembles to limit sampling error.

3. Use additional a priori information about rela
observations and state variables.

4. Try to determine the amount of sampling erro
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Atmospheric assimilation problems.
Weight regression as function of horizontaldistanc
Gaspari-Cohn: 5th order compactly supported p
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Ways to deal with regression samplin

3. Use additional a priori information about rela
observations and state variables.

Can use other functions to weight regression.
Unclear whatdistance means for some obs./state
Referred to asLOCALIZATION.
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Ways to deal with regression samplin

4. Try to determine the amount of sampling erro

A. Could weight regressions based on samp
Limited success in tests.
For small true correlations, can still get la

B. Do bootstrap with sample correlation to m
Limited success.
Repeatedly compute sample correlation

C. Use hierarchical Monte Carlo.
Have a ‘sample’ of samples.
Compute expected error in regression co
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es 4 groups of 20.

efficient,βi.

inimizes:

te increments).
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Ways to deal with regression samplin

4C. Use hierarchical Monte Carlo: ensemble of

Split ensemble into M independent groups.
For instance, 80 ensemble members becom

With M groups get M estimates of regression co

Find regression confidence factorα (weight) that m

Minimizes RMS error in the regression (and sta

αβi β j–[ ]2

i 1 i j≠,=

M
∑

j 1=

M
∑
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Ways to deal with regression samplin

4C. Use hierarchical Monte Carlo: ensemble of
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(1)

(2)

 (nice, not essential).

(3)

(4)

 t:

(5)

tk t0≥>
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Phase 3: Generalize to geophysical models a

Dynamical system governed by (stochastic) Dif

Observations at discrete times:

Observational error white in time and Gaussian

Complete history of observations is:

Goal: Find probability distribution for state at time

dxt f xt t,( )= G xt t,( )dβt+ t 0≥,

yk h xk tk,( )= vk k;+ 1 2 … tk 1+;, ,=

vk N 0 Rk,( )→

Yτ yl tl τ≤;{ }=

p x t Yt,( )
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 Difference Equation.

(6)

(7)

(8)

ator:

(9)

1
)

------

x
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Phase 3: Generalize to geophysical models a

State between observation times obtained from
Need to update state given new observation:

Apply Bayes rule:

Noise is white in time (3) so:

Integrate numerator to get normalizing denomin

p x tk Ytk
,( ) p x tk yk Ytk 1–

,,( )=

p x tk Ytk
,( )

p yk xk Ytk 1–
,( ) p x tk Ytk –

,(

p yk Ytk 1–
( )

-----------------------------------------------------------------------=

p yk xk Ytk 1–
,( ) p yk xk( )=

p yk Ytk 1– 
  p yk x( ) p x tk Ytk 1–

,( )d∫=
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(10)

t x and y are vectors.

 each observation.

 state vector.

1
)

)dξ
---------
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Phase 3: Generalize to geophysical models a

Probability after new observation:

Exactly analogous to earlier derivation except tha

EXCEPT, no guarantee we have prior sample for

SO, let’s make sure we have priors by ‘extending’

p x tk Ytk
, 

 
p yk x( ) p x tk Ytk –

,(

p yk ξ( ) p ξ tk Ytk 1–
,(∫

---------------------------------------------------------=
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on vector.

(2)

ues of observations.

mple of state vector x.

 observations.

1 tk t0≥>
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Phase 3: Generalize to geophysical models a

Extending the state vector to joint state-observati

Recall:

Applying h to x at a given time gives expected val

Get prior sample of obs. by applying h to each sa

Let z = [x, y] be the combined vector of state and

yk h xk tk,( )= vk k;+ 1 2 … tk +;, ,=
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Phase 3: Generalize to geophysical models a

NOW, we have a prior for each observation:

p z tk Ytk
, 

 
p yk z( ) p z tk Ytk 1–

,( )

p yk ξ( ) p ξ tk Ytk 1–
,( )dξ∫

------------------------------------------------------------------=
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 of those in set j.

rmalizations.

yk
1

yk
2 … yk

s, , ,{ }=
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Phase 3: Generalize to geophysical models a

One more issue: how to deal with many observati

Let yk be composed of s subsets of observations:

Observational errors for obs. in set i independent

Then:

Can rewrite (10.ext) as series of products and no

yk

p yk z( ) p yk
i z( )

i 1=

s

∏=
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Anderson: Ensemble Tutorial 143

Phase 3: Generalize to geophysical models a

One more issue: how to deal with many observati

Implication: can assimilate observation subsets s

If subsets are scalar (individual obs. have mutuall
distributions), can assimilate each observation

If not, have two options:
1. Repeat everything above with matrix algebr

2. Do singular value decomposition; diagonaliz
Assimilate observations sequentially in rot
Rotate result back to original space.

Good news: Most geophysical obs. have indepen
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How an Ensemble Filter Works for Geophysical D

Ensemble state
estimate after using
previous observation
(analysis).

Ensemble state at
time of next obser-
vation (prior).

tk tk+1

1. Use model to advanceensemble (3 members he
to time at which next observation becomes ava

*
*
*
*
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How an Ensemble Filter Works for Geophysical D

2. Get prior ensemble sample of observation, y
applying forward operator h to each ensemble m

Theory: ob
from instru
uncorrelat
be done s

y

*
*
*
*

h h
h
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How an Ensemble Filter Works for Geophysical D

3. Getobserved valueandobservational error distr
from observing system.

y

*
*
*
*

h h
h
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How an Ensemble Filter Works for Geophysical D

4. Findincrement for each prior observation ense
(this is a scalar problem for uncorrelated observ

y

*
*
*
*

h h
h Note: Differen

different flavo
ble filters is pr
observation in
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 impact of
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How an Ensemble Filter Works for Geophysical D

5. Use ensemble samples of y and each state v
regress observation increments onto state varia

y

*
*
*
*

h h
h

Theory:
observa
each sta
handled
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How an Ensemble Filter Works for Geophysical D

6. When all ensemble members for each state 
have a new analysis. Integrate to time of next o

y

*
*
*
*

h h
h

tk
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Some Error Sources in Ensemble

y

*
*
*
*

h h
h

tk

1. Model Error

2. h errors;
Representativeness

4. Sam
Gauss

5. Sampling
Assuming L
Statistical R

3. ‘Gross’ Obs. Errors
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Dealing With Ensemble Filter Er

y

*
*
*
*

h h
h

y

tk+2

tk

1. Model Error

2. h errors;
Representativeness

4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

Fix 1, 2, 3
HARD bu

Often, ens

1-4: Cova
Increase p
to give ob

5. ‘Localiz
obs. impa
‘nearby’ s

Often smo
impact to 
distance.

3. Gross Obs. Errors
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Model/Filter Error; Filter Divergence and Cova

1. Model imperfections lead to erroneous prior 

2. Filter sampling errors lead to too little varianc

3. Covariance inflation one way to attack this.

4. Inflated variance isλ times raw variance.

5. For ensemble member i,

Prior

Infl
Distributions for
State Variable x

Mean,x

inflate xi( ) λ xi x–(=
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Physical Space Covariance Inflati

Capabilities:

1. Can be very effective for a variety of mod

2. Can maintain linear balances.

3. Stays on local flat manifolds.

4. Simple and inexpensive.

Liabilities:

1. State variables not constrained by observ

For instance unobserved regions near th

2. Magnitude ofλ normally selected by trial a
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m

Observati
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 3: Generalize to geophysical models a

Simple example: Lorenz-63 3-variable chaotic m
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Phase 4: Quick look at a real atmospheric appl

Results from CAM Assimilation: Janu

Model:
CAM 2.0 T42L26.
U,V, T, Q and PS state variables impacted b
Land model (CLM 2.0) not impacted by obs
Observed SSTs.

Assimilation / Prediction Experiments:
Uses observations used in reanalysis

(Radiosondes, ACARS, Satellite Winds..
Initial tests for January, 2003.
Assimilated every 6 hours; +/- 1.5 hour wind
Run on CGD linux cluster Anchorage.
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Northern Hemisphere Temperature: Bi

CAM NCEP Re

−1 −0.5 0 0.5 1 1.5 2 2.5 3

100

200

300

400

500

600

700

800

900

1000

P
re

s
s
u

re
(h

P
a

)

T BIAS and RMSE, ensemble mean, NH

6−hour guess
analysis



1/19/05

ture

analysis
Anderson: Ensemble Tutorial 165

Southern Hemisphere Tempera
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Tropical Temperatures
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North America Temperature
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Northern Hemisphere Winds
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Southern Hemisphere Wind

CAM NCEP Re

−2 0 2 4 6 8 10 12

100

200

300

400

500

600

700

800

900

1000

P
re

s
s
u

re
(h

P
a

)

Vector Wind  BIAS and RMSE, ensemble mean, SH

6−hour guess
analysis



1/19/05

analysis
Anderson: Ensemble Tutorial 170

Tropical Winds
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North America Winds
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12 GMT 4 January, 2003, CAM Analysis
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Ensemble filters: What’s next?

1. Adaptive error correction.

2. Parameter estimation for models.

3. Better understanding of error characteristics.

4. Understanding ensemble size requirements 

5. Dealing with complicated forward observation

6. Ensemble smoothers (using data from the fu

7. Many, many, many exotic applications.
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Data Assimilation Research Testbed (

Software to do everything here (and more) is in

Requires F90 compiler, Matlab.

Available from www.cgd.ucar.edu/DAI/.


