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Predictability of a Data Assimilation / Pre

Jeffrey L. Anderson
NCAR Data Assimilation Initiative

Introduction:
I. Interesting predictability problems in assimilation / pre
II. Consider assimilation / prediction system as dynamic
III. Examine predictability of this system
IV. Examine ‘information content’ of observational system
V. Work here in perfect model world

Outline:
I. Introduce hierarchical ensemble filter
II. Look at predictability in Lorenz-96 low-order model

A. As function of ensemble size (detail of assimilatio
B. As function of observational error

III. Moderate resolution idealized atmospheric GCM, sur
A. Impact of observation frequency
B. Impact of observation density
C. A passing mention of ‘balance’ issues
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re) to time
How an Ensemble Filter Works

Ensemble state
estimate after using
previous observation
(analysis)

Ensemble state at time
of next observation
(prior)

tk tk+1

1. Use model to advanceensemble(3 members he
at which next observation becomes available

*
*
*
*
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y=H(x), by
e member

: observations
struments with
lated errors can

e sequentially.
How an Ensemble Filter Works

2. Get prior ensemble sample of observation,
applying forward operator H to each ensembl

Theory
from in
uncorre
be don

y

*
*
*
*

H H
H
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tribution
How an Ensemble Filter Works

3. Getobserved valueandobservational error dis
from observing system
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*
*
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H H
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semble
rvation errors)

y

rence between
vors of ensemble
imarily in
n increment
n

How an Ensemble Filter Works

4. Findincrement for each prior observation en
(this is a scalar problem for uncorrelated obse

y

*
*
*
*

H H
H Note: Diffe

different fla
filters is pr
observatio
computatio
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 variable to linearly
iable increments

y

ry: impact of
rvation increments on
 state variable can be
led sequentially!
How an Ensemble Filter Works

5. Use ensemble samples of y and each state
regress observation increments onto state var

y

*
*
*
*

H H
H

Theo
obse
each
hand
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 variable are updated,
 observation...

y

tk+2
How an Ensemble Filter Works

6. When all ensemble members for each state
have a new analysis. Integrate to time of next

y
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 Filters

y

tk+2

ampling Error;
ssian Assumption

ng Error;
 Linear
 Relation
Some Error Sources in Ensemble

y
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tk

1. Model Error

2. H errors;
Representativeness

4. S
Gau

5. Sampli
Assuming
Statistical

3. ‘Gross’ Obs. Errors
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rors

 1, 2, 3 independently;
RD but ongoing

lly, ensemble filters...

riance inflation,
uncertainty in prior to
rvations more impact

ation’: only let obs.
set of ‘nearby’ state

oothly decrease impact
nction of distance
Cohn)
Dealing With Ensemble Filter Er

y

*
*
*
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H H
H

y

tk+2

tk

1. Model Error

2. H errors;
Representativeness

4. Sampling Error;
Gaussian Assumption

5. Sampling Error;
Assuming Linear
Statistical Relation

3. ‘Gross’ Obs. Errors

Deal with
This is HA

Traditiona

1-4: Cova
Increase 
give obse

5. ‘Localiz
impact a 
variables

Often sm
to 0 as fu
(Gaspari-



10

r

ization’ with second
 Carlo to deal with
ampling errors

-member ensembles

 increments for each

 / state variable pair
ples of regression coef-

inγ implies state vari-
nts should be reduced

gression confidence fac-
Hierarchical Monte Carlo Filte
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tk
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H H
H

y

tk+2

tk

M independent
N-member
Ensembles

Replace ‘local
order Monte
regression s

M groups of N

Compute obs.

For given obs.
1. Have M sam

ficient,γ
2. Uncertainty 

able increme
3. Compute re

tor, α

γ1

γΜ

Regression
Confidence
Factor,α
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r

sample mean regression)

2
ean

up Size 2
up Size 4
up Size 8
up Size 16
Hierarchical Monte Carlo Filte

Here,α is function of M, and Q =Σγ / γ (ratio of sample S.D. to
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periments

lated observation

servations

hetic’ obs. by applying
ward observation’
rator to truth

, this is generally just
rpolating to a random
izontal location)
Perfect Model (Synthetic Observation) Ex

‘Truth’ is generated by integrating model

Instrument/representativeness error simulated:
Add draw fromspecified Gaussian distribution to the interpo

All the assimilation algorithm ever sees is these simulated ob
Result of assimilation can be compared to ‘truth’

*

time

Truth
(model)

Forward
Obs. Operator

Observational
Error
Distribution

Synthetic
Observation

‘Synt
‘for
ope

(Here
inte
hor



13

r: Lorenz-96 Model

 indices

ime series of state
ariable from free L96
ntegration
Predictability in a Hierarchical Ensemble Filte

Variable size low-order dynamical system
N variables, X1, X2, ..., XN

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F;           i = 1, ..., N with cyclic

Use F = 8.0, 4th-order Runge-Kutta with dt=0.05
With 40 state variables (N = 40) ‘attractor dimension’ is 13
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gn

ps

 but not today

 using time mean values of
acts
Lorenz 96 Experimental Desi

40 Randomly located observations fixed in time

Observed every time step

Initial ensemble members random draws from ‘climatology’

4000 step assimilations, results shown from second 2000 ste

Covariance inflation tuned for minimum RMS

Note: Good ideas on getting rid of covariance inflation, too,

4 groups of ensembles used

All results can be reproduced with traditional ensemble filters
regression confidence factor to ‘localize’ observation imp
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or Limit in L96

imilation methodology

 ensembles size > 13
r converges for any
up size (no sampling
or!)

 smaller ensembles,
or / spread increase

or RMS and Spread are
asures of predictabil-
of one step forecast

sterior (analysis) error
t shown) is also a mea-
e of predictability
Hierarchical Filter Predictability: Small Err

Predictability is function of model, observational network, ass
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ce Factors

 shown

ression confidence
tor for observation at
tion 0.64 with all 40

te variables

 ensemble size > 13,
tor is 1 everywhere (no

pling error)

servation impact
easingly localized as
emble becomes more
enerate
Hierarchical Filter Regression Confiden

Traditional Gaspari-Cohn localization with half-width 0.2 also
Shape is similar in this case
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. Error Variance

 observational error
ariance from 1e-5 to
e7

est case is just looking
t ‘climate’

r increases nearly lin-
ar for small errors

onential for intermedi-
te errors

n saturate for large
rrors
Hierarchical Filter Predictability: Varying Obs
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ce Factors

Obs. impact more
localized as error
increases

Climatological struc-
ture is two-peaked

Similar to coherence
structure from cli-
matological time
series
Hierarchical Filter Regression Confiden
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amical Core (Havana)

s for frequent observations)
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Predictability in an Idealized AGCM: GFDL FMS B-Grid Dyn
Held-Suarez Configuration (no zonal variation, fixed forcing)
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 AGCM

atological distribution
Experimental Design Details: Bgrid

Ensemble size is 20 for ALL cases here

Each assimilation case is run for 400 days; starting from clim

Summary results are from last 200 days

No bias correction steps taken (no covariance inflation)
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bs

s

ependent
Bgrid: Experimental Sets

1. Impact of spatial density of observations:
150, 300, 450, 900, 1800, 3600, 7200, 14400, 28800 PS o
Every 24 hours
PS observational error standard deviation 1.0 mb

2. Impact of frequency of observations
1800 PS observations
Every 24, 12, 6, 4, 3, 2, and 1 hours, 30, 15, and 5 minute
PS observational error standard deviation 1.0 mb

3. Information content of different observation types
1800 observations of PS, or low-level T, or low-level U/V
Every 24 hours
PS observational error SD 2.0 and 1.0 mb
T observational error SD 1.0 and 0.5 K
U/V observational error SD 2.0 and 1.0 m/s, U, V errors ind
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al domain
eg. longitude

, 40%
Bgrid: Experimental Sets

4. What happens if observations are confined to limited spati
450 PS obs, only in N. Hemisphere between 90 and 270 d
Every 24 hours
PS observational error standard deviation 1.0 mb

5. Impact of increased vertical resolution
1800 PS obs
Every 24 hours
PS observational error standard deviation 1.0 mb
5 and 18 vertical levels

6. Impact of adding stochastic ‘sub-grid scale’ noise
1800 PS obs, Every 24 hours
PS observational error standard deviation 1.0

Temperature time tendency noise standard deviation 0, 10%
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Obs. at 20N, 60E
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Obs. at 20N, 60E
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Obs. at 20N, 60E
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Obs. at 20N, 60E
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ours

Impacts of spatial density of PS obs

150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 h
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ours

Impacts of spatial density of PS obs on Temperature RMS

150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 h

Behavior for Temperature (and U, V not shown) similar to that for PS
Best results for 7200 PS observations
Interior level mean T RMS of about 0.25 K for best case
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Impacts of frequency of PS obs
24, 12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.
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Impacts of frequency of PS obs
24, 12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.

Temperature (and U and V, not shown) similar to PS
Consistent decrease in RMS with increased obs frequency
Errors at 5 minute frequency less than 0.01 K !!!
How low can you go?
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What’s going on at moderate obs frequencies?

Equilibrated model has very low gravity wave amplitude
When perturbed, ‘off-attractor’ gravity waves can result
Noise in observations can project off attractor

Ensemble members pulled in same direction; get phased gravity wa

Gravity wave period varies: approximately 4 hours
Gravity waves heavily damped; quickly reduced in amplitude

Low frequency (> 12 hours): gravity waves damped before next obs 

High frequency (< 1 hour): enough obs per period to control amplitud

Moderate frequency (~ 4 hours): get phased gravity waves in ensemble;
large bias; increased assimilation error

5 10 15 20
1.0147

1.0148

1.0148

1.0149

1.0149

1.015

1.015

1.0151

1.0151
x 10

5

TIME (HOURS)

S
U

R
F

A
C

E
 P

R
E

S
S

U
R

E
 (

h
P

a
)

TRUTH 
10 ENSEMBLE MEMBERS

Time series of
10 out of 20
ensemble
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example)
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Why doesincreasingfrequency domorethanincreasingdensity?

>>1. Temporal has more ‘independent’ correlation estimates

Can better eliminate sampling noise

>>2. Temporal sees observations at more ‘phases’ of wavelik
structures

>>3. Large ensemble size could help to distinguish this by
reducing sampling noise

These are yet to be done

>>4. Historically, high frequency obs were hard to acquire

Modern technology changes this

Exploring use of high frequency obs is planned
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Need to demonstrate model has error growth
Free integration (forecast) at end of 1800 PS obs every 5 minutes
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Error growth of other fields similar to PS
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Relative Information Content of Various Surface Obs
Compare PS with T and U/V obs from lowest level
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Assimilating PS over limited domains
450 PS obs every 24 hours over 1/4 of surface
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Assimilating PS over limited domain

RMS error for T at day 400;

Error in box about twice that for 1800 global obs

Information is advected out of the box (to the east in mid-latitudes)

Method handles low information propagating in from upstream

Implications for regional and nested model filter data assimilation
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What happens with increased resolution?

Comparison of 1800 PS obs for 5 and 18 level model
Tricky comparison, diffusion, etc. are identical
Error in upper levels of 18-level actually less

Horizontal resolution, water vapor, and more comprehensive physics:
First results in NCAR CAM at 2 degree resolution appear consistent
Results by Whitaker and Hamill with PS obs in NCEP model are goo
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Predictability and stochastic sub-grid scale parameterizatio

Models don’t resolve all spatial scales and processes

Normally parameterized (usually by column physics)

In prediction models, physics is usually deterministic

In reality, best we can hope for is to know probability distributio
for impact of unresolved processes

Can simulate this in perfect model by adding random noise t
model

Here, add noise factor to temperature tendency computation

At each gridpoint, let dT/dt = MODEL * (1 + N(0, R))
N(0, R) is random number with mean 0 and standard deviatio

Independent noise at each point in current implementation

Ran cases with R = 0.1, 0.4

1800 PS obs every 6 hours (moderate gravity wave amplitud
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Impacts of sub-grid noise on Assimilation Error
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Error growth and predictability with sub-grid scale noise
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Conclusions

1. Interesting ‘Predictability’ questions in assimilation / predic
tion systems

2. Need to account for details of assimilation

3. Some parameter ranges look ripe for useful analysis (sma
errors in this presentation for instance)

4. Assessing information content of observations very useful

5. Leads to rational design of observing systems

6. (Small) ensemble filter can extract lots of information

7. Increasing temporal density of obs may be very effective

8. Bias, bias, and bias are key remaining problems

9. Predictability studies must be done in assimilation / predict
context with stochastic sub-grid scale parameterizations
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Dealing with bias in ensembles is remaining problem

Bayesian Theory supporting filters excludes bias

But, we know there are many violations of the Gaussian assu
tions we make for implementation

Need to build an additional a priori model of bias

Covariance inflation and related tricks are one simple model
Have some advantage by retaining correlation structure
Simply States that there is an additional Gaussian compon

of error that is not accounted for by the model

Can we do more sophisticated, adaptive models?

With ensemble and known observation error distribution, can
determine expected value of sum of model and observatio
bias for any observation

In other words, is the distance between the prior obs estimat
and the obs inconsistent?

Can aggregate these statistics in time, or space or both

Need to partition unaccounted error into one of three bins:
1. Model first moment bias (error)
2. Model second moment bias (error)
3. Observation bias (error)
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Dealing with bias in ensemble filters (cont.)

May be easy to partition between 3 and combined (1, 2)
Similar to buddy checks
Are observations in same ‘area’ not consistently inconsiste
If so, much more inconsistent obs should have large bias

Tricky problem, how to partition bias between first and secon
moment in model

If it’s first moment, just let observation be more compelling

If it’s second, need to reduce decrement in spread

Initial results playing with this have been very successful in ve
large bias systems

Need to try out in a real setting

Note: this should eventually replace a part of quality control


