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Predictability of a Data Assimilation / Prediction System

Jeffrey L. Anderson
NCAR Data Assimilation Initiative

Introduction:
l. Interesting predictability problems in assimilation / prediction systems
ll. Consider assimilation / prediction system as dynamical system of interest
lll. Examine predictability of this system
V. Examine ‘information content’ of observational systems
V. Work here in perfect model world

Outline:

|. Introduce hierarchical ensemble filter

Il. Look at predictability in Lorenz-96 low-order model
A. As function of ensemble size (detail of assimilation system)
B. As function of observational error

lll. Moderate resolution idealized atmospheric GCM, surface pressure obs. only
A. Impact of observation frequency
B. Impact of observation density
C. A passing mention of ‘balance’ issues
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How an Ensemble Filter Wks

1. Use model to advance (3 members here) to time
at which next observation becomes available

Ensemble state Ensemble state at time
estimate after using of next observation
previous observation ( )

(analysig

*

*

*



3

How an Ensemble Filter Wks

2. Get prior ensemble sample of observation, y=H(x), by
applying forward operator H to each ensemble member

y ﬂl’heory: observations
from instruments with
uncorrelated errors can
be done sequentially.

» H H N J
*
*

>*
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How an Ensemble Filter Wks

3. Getobserved valuandobservational error distribution
from observing system
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How an Ensemble Filter Wks

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors)

H H Note: Difference between
different flavors of ensemble
filters is primarily in
observation increment

\Computation y

¥ *

>*
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How an Ensemble Filter Wks

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments

ﬂl‘heory: Impact of A
observation increments gn
each state variable can he

handled sequentially!
-

* *

>*
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How an Ensemble Filter Wks

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...

*

* o o
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Some Error Sources in Ensemble Filters
3. ‘Gross’ Obs. Errgrs

2. H errors; ) 4. Sampling Error;
Representateness L=~ "7 7" Gaussian Assumption
i /4
|‘ *4/\»
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1. Model Error 5. Sampling Error:”

Assuming Linear
Statistical Relation
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Dealing Wth Ensemble

Filter Errors

Deal with 1, 2, 3 independently;
This is HARD but ongoing

2. H errors;
Representateness

1
\
\

1. Model Efror

3. ‘Gross’ Obs. Ergors
L4

4. Sampling Error;
= Gaussian Assumpti

4

o=

DN

5. Sampling Error,"
Assuming Linear
Statistical Relation

Traditionally, ensemble filters...

1-4: Covariance inflation,
Increase uncertainty in prior to
give observations more impact

5. ‘Localization’: only let obs.
Impact a set of ‘nearby’ state
variables

Often smoothly decrease impact
to O as function of distance
(Gaspari-Cohn)
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Hierarchical Monte Carlo Filter

A@w

-

y -

H AN Y1
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: N
M independent  { Regression

N’ mem b_e_r : |(:Zontﬁdence
Ensembles y o
______ \
4&»*@
y - )/

Replace ‘localization’ with second
order Monte Carlo to deal with
regression sampling errors

M groups of N-member ensembles
Compute obs. increments for each

For given obs. / state variable pair

1. Have M samples of regression coef-
ficient,y

2. Uncertainty iry implies state vari-
able increments should be reduced

3. Compute regression confidence fac-
tor, a
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Hierarchical Monte Carlo Filter

Here,a is function of M, and Q ==y/y (ratio of sample S.D. to sample mean regression)
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Q: Ratio of sample standard deviation to mean
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Perfect Model (Synthetic Obsaton) Experiments

“Truth’ is generated by integrating model

Synthetic  ‘Synthetic’ obsby applying
Observation ‘forward observation’
. / operatorto truth

(Here, this is generally just
Forward interpolating to a random
Obs. Operator horizontal location)

time >
e

Instrument/representativeness error simulated:
Add draw from to the interpolated observation

All the assimilation algorithm ever sees is these simulated observations
Result of assimilation can be compared to ‘truth’
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Predictability in a Hierarchical Ensemble Filter: Lorenz-96 Model

Variable size low-order dynamical system

N variables, X, X, ..., Xy

dX;/ dt = (Xi+1 - Xi.2)Xi1 - Xj + F; =1, ..., N with cyclic indices
Use F = 8.0, 4th-order Runge-Kutta with dt=0.05

With 40 state variables (N = 40) ‘attractor dimension’ is 13

12

10} 1 Time series of state
sl 1 variable from free L96
oL integration

al |

Or |
ol
al |
el |
0 50 100 150 200 250 300 350 400

TIME
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Lorenz 96 Experimental Design

40 Randomly located observations fixed in time

Observed every time step

Initial ensemble members random draws from ‘climatology’
4000 step assimilations, results shown from second 2000 steps
Covariance inflation tuned for minimum RMS

Note: Good ideas on getting rid ofvamiance inflation, too,ui not today

4 groups of ensembles used

All results can be reproduced with traditional ensemble filters using time mean values of
regression confidence factor to ‘localize’ observation impacts
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Hierarchical Filter Predictability: Small Error Limit in L96

2.5 . . . , | | | | .
=== Ensemble Mean RMS Error FOI’ ensembles size > 13
== Ensemble Spread filter converges for any

group size (no sampling

2f 1 error!)

For smaller ensembles,
error / spread increase

SPREAD

15

Prior RMS and Spread are
measures of predictabil-
ity of one step forecast

L Posterior (analysis) error

(not shown) is also a mea-
sure of predictability

RMS ERROR,;
H

0.5

O | | | | | | | |
2 4 6 8 10 12 14 16 18 20

ENSEMBLE SIZE
Predictability is function of model, observational network, assimilation methodology
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Hierarchical Filter Rgression Confidenceaktors

* % ok H

= ENS. 13
= ENS. 8

ENS. 5
m— ENS. 3
-=- GCO0.2

*k FkKD Kk *k *x

04 0.6
State Variable Location

Regression confidence
factor for observation at
location 0.64 with all 40
state variables

For ensemble size > 13,
factor is 1 everywhere (no
sampling error)

Observation impact
increasingly localized as
ensemble becomes more
degenerate

Traditional Gaspari-Cohn localization with half-width 0.2 also shown
Shape is similar in this case
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Hierarchical Filter Predictability: &ying Obs. Error &riance

25

20

151

10

#® Ensemble Mean RMS Error .
® Ensemble Spread
|
e
.. . s |
10 10 10

OBSERVATIONAL ERROR VARIANCE

Vary observational error
variance from le-5to
le7

Largest case is just looking
at ‘climate’

Error increases nearly lin-
ear for small errors

Exponential for intermedi-
ate errors

Then saturate for large
errors
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Hierarchical Filter Rgression Confidenceaktors
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0 0.2 04 0.6
State Variable Location

Obs. impact more
localized as error
Increases

Climatological struc-
ture is two-peaked

Similar to coherence
structure from cli-
matological time
series
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Predictability in an Idealized @CM: GFDL FMS B-Grid Dynamical Core (idana)

Held-Suarez Configuration (no zonal variation, fixed forcing)
Low-Resolution (60 lons, 30 lats, 5 levels); Timestep 1 hour (less for frequent observations)
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Surface Pressure: Day391
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Surface Pressure: Day392
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Surface Pressure: Day393 4
10%
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Surface Pressure: Day394 4
10%
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Surface Pressure: Day395 4
10%
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Surface Pressure: Day396 4
10%
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Surface Pressure: Day397 4
10%
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Surface Pressure: Day398 4
10%
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Surface Pressure: Day399 4
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Surface Pressure: Day400 4
10%
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Experimental Design Details: BgridCM

Ensemble size is 20 for ALL cases here
Each assimilation case is run for 400 days; starting from climatological distribution
Summary results are from last 200 days

No bias correction steps taken (no covariance inflation)
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Bgrid: Experimental Sets

1. Impact of spatial density of observations:
150, 300, 450, 900, 1800, 3600, 7200, 14400, 28800 PS obs
Every 24 hours
PS observational error standard deviation 1.0 mb

2. Impact of frequency of observations
1800 PS observations
Every 24, 12, 6, 4, 3, 2, and 1 hours, 30, 15, and 5 minutes
PS observational error standard deviation 1.0 mb

3. Information content of different observation types
1800 observations of PS, or low-level T, or low-level U/V
Every 24 hours
PS observational error SD 2.0 and 1.0 mb
T observational error SD 1.0 and 0.5 K
U/V observational error SD 2.0 and 1.0 m/s, U, V errors independent
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Bgrid: Experimental Sets

4. What happens if observations are confined to limited spatial domain
450 PS obs, only in N. Hemisphere between 90 and 270 deg. longitude
Every 24 hours
PS observational error standard deviation 1.0 mb

5. Impact of increased vertical resolution
1800 PS obs
Every 24 hours
PS observational error standard deviation 1.0 mb
5 and 18 vertical levels

6. Impact of adding stochastic ‘sub-grid scale’ noise
1800 PS obs, Every 24 hours
PS observational error standard deviation 1.0
Temperature time tendency noise standard deviation 0, 10%, 40%
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Baseline Case: 1800 PS Oh®iy 24 hours

Min = -185.1243 Max = 244.9236 RMS ERROR = 37.5623
90

Largest error in mid-lati-
tudes, ‘synoptic’ scales

200
100

after 400 days 45
150
0 0

500p; 1-50

I — RMS ENSEMBLE MEAN ERROR
450k - - ENSEMBLE SPREAD -100

|

! -150

400

w
a1
o

— = —

PS Error Reduces by about factor of 10

HECI O-PASCALS

Asymptotes after about 50 days

Ensemble spread is approximately corre-
lated with RMS error

0 50 100 150
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Baseline Case: 1800 PS Oh®iy 24 hours

Largest T error in trop- %0

ics for interior levels
(level 3, day 400 shown)ss

Min = -1.9012 Max = 2.3893 RMS ERROR = 0.24305

2.5

— LEVEL1 (Top)
— LEVEL2
— LEVEL3
— LEVEL4
—— LEVELS (Bottom)

DEGREES K

DAYS

100

l]-.5
T

10.5

10

1—0.5
-1

-1.5

360

T Error also reduced by about factor of 10
Asymptotes about day 70

Final error about 0.25 K for interior levels
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Hierarchical Filter Rgression ConfidenceaEtors: PS Obs. at 20N, 60E

ps mean factor ps median factor
1 60 1
- B
0.8 0.8
10.7 40 10.7
10.5 10.5
10.4 20 10.4
10.3 10 10.3
0.2 0.2
0
0.1 0.1
0 -10 0
20 40 60 80 100 20 40 60 80
PS to PS
Ccross section at row 19 cross section at columnl1l
1 1
0.8} 1 0.8t
0.6} 1 0.6t
0.4}t . 0.4+t
0.2t . 0.2+t
0 0

20 40 60 80 100 0 20 40 60
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Hierarchical Filter Rgression ConfidenceaEtors: PS Obs. at 20N, 60E

t mean factor level 1 t mean factor level 2 t mean factor level 3

60 1 60 1 60 1
50 IO.9 50 I0.9 50 IO.9
0.8 0.8 0.8
40 + 10.7 40 t {0.7 40 10.7
+ 10.5 + 10.5 10.5
20 L 10.4 20 - 10.4 20 10.4
10 0.3 10 0.3 10 0.3
0.2 0.2 0.2
0 0.1 0 0.1 0 0.1

-10 0O -10 0O -10 0

20 40 60 80 100 20 100 20 40 60 80 100

PSto T

t mean factor level 4 t mean factor level 5 Cross section at row 19

1 60 1 1

Io.g Io.9

0.8 0.8 0.8}
10.7 40 10.7

O 1 10.6 35 10.6 0.6}
- 10.5 10.5

{04 20 10.4 0.4}

0.3 10 0.3

0.2 0.2 0.2}

0.1 0.1

50

0O -10 0 ' ' '
20 40 60 80 100 20 20 40 60 80 100
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u mean factor level 1 u mean factor level 2 u mean factor level 3

60

Hierarchical Filter Rgression ConfidenceaEtors: PS Obs. at 20N, 60E
1 60
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0.2 0.2 0.2

0.1 0.1 0.1
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0 0 0
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0 10 -10
20 40 60 80 100 20

0
100 20 40 60 80 100

PStoU

u mean factor level 4 u mean factor level 5 cross section at row 18
1 60 1 1 - - -
IO.9 50 IO.9
0.8 0.8 0.8¢
10.7 40 10.7
10.6 30 10.6 0.6¢
+ 10.5 -+ 10.5
- {0.4 20 - - {0.4 0.4}
10.3 10 0.3

0.2
0.1

0.2 0.2}
0.1

0O -10 o ' ' '
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
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Hierarchical Filter Rgression ConfidenceaEtors: PS Obs. at 20N, 60E

v mean factor level 1 v mean factor level 2 v mean factor level 3
60 1 60 1 60 1
50 I0.9 50 IO.9 50 IO.9
0.8 0.8 0.8
40 - 10.7 40 - 10.7 40 - 10.7
20 - {06 3 @ - {0.6  3q <<>> D L 10.6
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10 0.3 10 0.3 10 0.3
0.2 0.2 0.2
0 0.1 0 0.1 0 0.1
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PStoV
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10.7 40 10.7
- 10.6 30 - 10.6 0.6¢
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Impacts of spatial density of PS obs
150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 hours

350
PS error

reduces to

| ¥~150 OBS
about 0.3 mb

w
o
o

N
1
()

150 obs
reduces clima-
tological error
by less than
half

N
o
o
|

More than 7200
obs appears
superfluous

100+ 1800 OBS Base Case

/ 7200 OBS

ENSEMBLE MEAN PRIOR RMS PS ERROR (hPa)

Why is 14,400
worse? No
O | | | | |
clue. 0 05 1 15 ? 25 3
NUMBER OF PS OBS EVERY 24 HOURS 10"

Plotting log /log of RMS
shows approx. linear
decrease from 150 to
7200 obs

Behavior for very large
numbers of obs clearly
different

ENSEMBLE MEAN PRIOR RMS PS ERROR (hPa)

1
10 L L
10 10° 10 10
NUMBER OF PS OBS EVERY 24 HOURS
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Impacts of spatial density of PS obs eamperature RMS
150, 300, 450, 900, 1800, 3600, 7200, 14400 and 28,800 every 24 hours

g
a1

— LEVEL 1
— LEVEL 2
T — LEVEL 3
LEVEL 4
— LEVELS

N

=
ul

-

o
o

ENSEMBLE MEAN PRIOR RMS TEMP ERROR (K)

+

15 2 : 3
NUMBER OF PS OBS EVERY 24 HOURS % 10°

Behavior for Temperature (and U, V not shown) similar to that for PS
Best results for 7200 PS observations
Interior level mean T RMS of about 0.25 K for best case
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Impacts of frequencof PS obs

24,12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.

Steady RMS
decrease as fre
guency
increases

Much smaller
RMS than for
high density
low frequency
obs

RMS <0.02mb
for 5 minutes

Strange behav-
jor between 1
and 6 hour fre-
guency

Plotting log /log of RMS showsg

40

©
o

< 350

EAN PRIOR RMS PS ERROR

b

W 10

SEMB

Z
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w
o
T

N
ol
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N
[e)
T

|
ol
T

5

10 15 20

ASSIMILATION FREQUENCY, HOURS

approx. linear increase with ag

bump

What's going on in the middle

ENSEMBLE MEAN PRIORRMS PS ERR

10°

10 L L L
10° 10" 10° 10"
ASQSIMII ATION FRFOLIFENCY HOIIRS

10
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Impacts of frequencof PS obs
24,12, 6, 4, 3, 2, 1 hours; 30, 15, 5 minutes; 1800 obs.

— LEVEL1
— LEVEL 2
— LEVEL3
—— LEVEL4
— LEVEL 5

o
w
T

0.25

©
N
T

WV

0.15

o
[N
T

ENSEMBLE MEAN PRIOR RMS TEMP ERROR (K)

0 1= | | | |
10 15 20

5
ASSIMILATION FREQUENCY, HOURS

Temperature (and U and V, not shown) similar to PS
Consistent decrease in RMS with increased obs frequency
Errors at 5 minute frequendess than 0.01 K !!!

How low can you go?
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What's going on at moderate obs frequencies?

Equilibrated model has very low gravity wave amplitude
When perturbed, ‘off-attractor’ gravity waves can result
Noise in observations can project off attractor

Ensemble members pulled in same direction; get phased gravity waves

Gravity wave period varies: approximately 4 hours
Gravity waves heavily damped; quickly reduced in amplitude

Low frequency (> 12 hours): gravity waves damped before next obs time
High frequency (< 1 hour): enough obs per period to control amplitude

Moderate frequenc(~ 4 hours): get phased gity waves in ensemble;
large bias; Increased assimilation error

x 10°

1.0151¢

— TRUTH
— 10 ENSEMBLE MEMBERS

Time series of 10151}
10 out of 20
ensemble
members at
mid-latitude PS
point. 1.0149F
Forecast initi-
ated from end
of 1800 PS 0bs 3 1 14s!
every 4 hours

1.0149y¢

RFACE PRESSURE (hPa)

1.0148

(Extreme

1.0147
example) 5 10 15 20
TIME (HOURS)
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Why doesincreasindgreqgueng do morethanincreasinglensity?

>>1. Temporal has more ‘independent’ correlation estimates

Can better eliminate sampling noise

>>2. Temporal sees observations at more ‘phases’ of wavelike
structures

>>3, Large ensemble size could help to distinguish this by
reducing sampling noise

These are yet to be done

>>4, Historically, high frequency obs were hard to acquire
Modern technology changes this

Exploring use of high frequency obs is planned
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Need to demonstrate model has errondino

Free integration (forecast) at end of 1800 PS obs every 5 minutes

7007

Error saturates
at climatologi-
cal values after
about 60 days

600

500

400

hPa

Error doubling — 5,
time about 7
days 200

Considerably 100
slower than real
atmosphere 0

Error growth n

very nearly lin-
ear in log plot

hPa
)

Growth is
almost purely
exponential to

saturation 10° |

—— RMS ENSEMBLE MEAN ERROR
- - - ENSEMBLE SPREAD

" — RMS ENSEMBLE MEAN ERROR 4
;/ - - - ENSEMBLE SPREAD
20 40 60 80

DAYS

100
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Error grawth of other fields similar to PS

3.5r
—— LEVEL1 (Top)
T(and Uand V — LEVEL2
tsh | 3 — LEVEL3
not shown) also  LEVEL4
saturate at 25744—'LEVEL5(Bouom)
about 60 days
X
2 2
Ll
@
Q 1sh
(a)
1,
0.5F
0
0
DAYS
10" ; ; I :
Growth is very
nearly expo- 10°
nential '
throughout

DEGREES K
-
o

LEVEL1 (Top)
—— LEVEL2

—— LEVEL3 .
~—— LEVEL4 :
—— LEVELS5 (Bottom)

0 20 40 60 80 100
DAYS
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Relatve Information Content of dfious Surdce Obs

Compare PS with T and U/V obs from lowest level

RMS error of
PS prior assim-
ilation when
assimilating
1800 PS, T, or
U and V wind
components
every 24 hours.

Two specified
error SDs are
checked for
each.

RMS PS ERROR (hPa)

RMS error of
T for same
cases.

Very roughly,
U/V obs with
2M/S SD have
same informa-
tion content as W
PS with 1mb 2
SDorTwith =
0.5K SD.

MPERATURE ERROR (K)

o
ol

I~
N
T

0.31

w

0.21

0.11

Bl LEVEL 1
B LEVEL?2
[ ] LEVEL 3 ||
I LEVEL 4
Bl LEVELS

un
2M/S
SD

un
1M/S
SD
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Assimilating PS wer limited domains
450 PS obs every 24 hours over 1/4 of surface

Ensemble mean prior assimilation for PS at 400 days
Approaches zonal climatology with no obs information

X 104

90 10.2

45 10.1

10

9.9

9.8

RMS Error for PS at 400 days
Error in box about twice the value for 1800 global obs

RMS ERROR = 320.2063 ERROR IN BOX = 84.584

3000

2000

1000

—1000

0 90 180 270 360
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Assimilating PS @er limited domain

RMS error for T at day 400;

RMS ERROR =1.4118 ERROR IN BOX = 0.59219
90

45

-90=

Error in box about twice that for 1800 global obs

Information is advected out of the box (to the east in mid-latitudes)
Method handles low information propagating in from upstream

Implications for regional and nested model filter data assimilation
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What happens with increased resolution?

1 1 1
0.9} 1 o9} 1 o9} .
0.8} 1 o8} 41 o8} .
S o7t 1 o7t 1 o7t .
'—
1
—
2 06f 1 o6} 1 o6} .
LLl
O
m
L osf 1 o5} 1 o5} .
)
(9]
1
o 04f 1 o4af 1 04} |
l_
I
)
W 03} 1 o3} 1 o3} .
I
0.2} 1 o2t 1 o2t .
0.1} 1 oaf 1 oaf v
18 LEV
O LI L O\ T L O Ll L
0 0.2 0.4 0 05 1 0 05 1
RMS T ERROR (K) RMS U ERROR (M/S) RMS V ERROR (M/S)

Comparison of 1800 PS obs for 5 and Melenodel
Tricky comparison, diffusion, etc. are identical
Error in upper levels of 18-level actually less

Horizontal resolution, ater \apor and more comprehemsi plysics:
First results in NCAR CAM at 2 degree resolution appear consistent
Results by Whitaker and Hamill with PS obs in NCEP model are good
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Predictability and stochastic sub-grid scale parameterizations

Models don’t resolve all spatial scales and processes
Normally parameterized (usually by column physics)
In prediction models, physics is usually deterministic

In reality, best we can hope for is to know probability distribution
for impact of unresolved processes

Can simulate this in perfect model by adding random noise to
model

Here, add noise factor to temperature tendency computation

At each gridpoint, let dT/dt = MODEL * (1 + N(0, R))
N(O, R) is random number with mean 0 and standard deviation R

Independent noise at each point in current implementation

Ran cases with R=0.1,0.4

1800 PS obs every 6 hours (moderate gravity wave amplitude)
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Impacts of sub-grid noise on Assimilation Error

40 w x

40% NOISE

For 10%, error .| |

is slightly

reduced 30t 1
o5/ NO NOISE 10% NOISE

Adding noise

in right propor-
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Error gravth and predictability with sub-grid scale noise

600

PS error
growth is
mostly linear at
first.

500

400

Then hintof & 300f
exponential
after day 157 200+

Saturates by 100
day 25. ~ | — RMS ENSEMBLE MEAN ERROR

- - - ENSEMBLE SPREAD

0 1 1 1 1 |
0 10 20 30 40 50

DAYS

Should expect

error growth in

real systems to
look like this.

Operational ,
systems do not |/

. —— RMS ENSEMBLE MEAN ERROR
at this point” , - -~ ENSEMBLE SPREAD
101 I 1 1 1
10 20 30 40 50

DAYS



54

Conclusions

1. Interesting ‘Predictability’ questions in assimilation / predic-
tion systems

2. Need to account for details of assimilation

3. Some parameter ranges look ripe for useful analysis (small
errors in this presentation for instance)

4. Assessing information content of observations very useful
5. Leads to rational design of observing systems

6. (Small) ensemble filter can extract lots of information

7. Increasing temporal density of obs may be very effective

8. Bias, bias, and bias areykremaining problems

9. Predictability studies must be done in assimilation / prediction
context with stochastic sub-grid scale parameterizations
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Dealing with bias in ensembles is remaining problem

Bayesian Theory supporting filters excludes bias

But, we know there are many violations of the Gaussian assump-
tions we make for implementation

Need to build an additional a priori model of bias

Covariance inflation and related tricks are one simple model
Have some advantage by retaining correlation structure
Simply States that there is an additional Gaussian component

of error that is not accounted for by the model

Can we do more sophisticated, adaptive models?

With ensemble and known observation error distribution, can
determine expected value of sum of model and observation
bias for any observation

In other words, is the distance between the prior obs estimates
and the obs inconsistent?

Can aggregate these statistics in time, or space or both

Need to partition unaccounted error into one of three bins:
1. Model first moment bias (error)
2. Model second moment bias (error)
3. Observation bias (error)
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Dealing with bias in ensemble filters (cont.)

May be easy to partition between 3 and combined (1, 2)
Similar to buddy checks
Are observations in same ‘area’ not consistently inconsistent
If so, much more inconsistent obs should have large bias

Tricky problem, how to partition bias between first and second
moment in model

If it's first moment, just let observation be more compelling
If it's second, need to reduce decrement in spread

Initial results playing with this have been very successful in very
large bias systems

Need to try out in a real setting

Note: this should eventually replace a part of quality control



