Data Assimilation Research Testbed Tutorial

Data
Assimilation

Research
Testbed

Section 21: Observation Types and Observing System Design

Version 1.0: October, 2005

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 1 10/18/05

Dart assimilations are controlled by observation sequence files:

Observation sequence files contain a time-ordered list of observations
Stored as a ‘linked list’ abbservations.

(First Time) (Last Time)
fUnique Key\ fUnique Key\ fUnique Key\ fUnique Key\
Values Values Values Values
(0O or more) (0O or more) (0O or more) (0O or more)
QC Fields QC Fields QC Fields QC Fields
(0O or more) (0O or more) (0O or more) (0O or more)
Definition Definition Definition Definition
— _/ [I | —
\. ‘ e ‘ y, -—< ‘ < ‘ y,

DART filter ‘assimilates’ until it runs out of observations.
Same for synthetic observation generation with perfect_model_obs.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 2 10/18/05

Details of an observation type (type obs_type in obs sequence_mod)

Obs_type _ Integer

(Unique Ke?/ obs_def_type
Values — Section 17 Location
(0 or more)
QC Fields Observation King
(0 or more) Time
Definition Error Variance

N

\ ‘ K»\J\mique Key (copy

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 3 10/18/05

Details of observation definition (type obs_def type in obs def mod)

Location type require

obs def type /| for model's domain
(1d, 3d_sphere,...)

Location

—

) . —
Observation Kinc Integer index into

obs_kind_infotablein

Time
obs_kind_mod
Error Variance _
time_type)

Pnique Key (cop

Same as in observation

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 4 10/18/05

Details of observation definition (type obs_def type in obs def mod)
Description of obs_kind_info table.

obs_def type \ obs_kind_info

Location (Integer FO0 RADIOSONDE_ ACARS_U_WIND
identifier TEMPERATURE _COMPONENT
Observation Kin :

: Name: string ver{ “RADIOSONDE_ ‘ACARS _U_ WIND
Time sion of identifier | TEMPERATURE” _COMPONENT”
Error Variance Generic KIND KIND_U_WIND

variable type TEMPERATURE COMPONENT
I.Jnique Key (copyl
Assimilate? TRUE FALSE
Evaluate? FALSE TRUE
g J

Example: Observation is a radiosonde temperature.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 5 10/18/05

The obs_kind _info table, generic types, and observation types:

obs_kind_info table built by DART preprocess program.

obs_kind_info Defined in special
obs_def module headdgrs.

(Integer F9O RADIOSONDE_ ACARS_U_WIND
identifier TEMPERATURE _COMPONENT
Name: string ver{ “RADIOSONDE_ “ACARS_U_WIND /
sion of identifier | TEMPERATURE” _COMPONENT"
Generic KIND_ KIND_U_WIND Integer parameters |
variable type TEMPERATURE COMPONENT —® global data section o
obs_kind_mod
Assimilate? TRUE FALSE \
Set in obs_kind_nml.
Evaluate? FALSE TRUE _ See section 17.
g J

Radiosonde temps assimilated, forward operators only for ACARS u.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 6 10/18/05

The obs_kind _info table, generic types, and observation types:
Many observation types may share a generic type.
Example:RADIOSONDE_TEMPERATUREACARS_TEMPERATURE..

obs_kind_info Defined in special
obs_def module headdgrs.

(Integer F90 RADIOSONDE ACARS U WIND
identifier TEMPERATURE _COMPONENT
Name: String ver{ “RADIOSONDE “ACARS U WIND
sion of identifier | TEMPERATURE" _COMPONENT”
Generic KIND KIND U WIND Integer parameters i
variable type TEMPERATURE COMPONENT = global data section o
obs_kind_mod
Assimilate? TRUE FALSE
Set in obs_kind_nml.
Evaluate? FALSE TRUE _ See section 17.
\. y

Both have generic KIND TEMPERATURE.
Model state variables can also be associated with generic types.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 7 10/18/05

The obs_kind _info table, generic types, and observation types:
Many observation types may share a generic type.
Example:RADIOSONDE_TEMPERATUREACARS_TEMPERATURE..
Both have generic KIND _TEMPERATURE.

Model state variables can also be associated with generic types.

Example: CAM/WRF interpolate in T field for all observation types
with generic type KIND_TEMPERATURE.

Models can use the obs kind _mod:
Have access to all generic types.
Also have access to all observation types if needed.

CONFUSING generic types and obs#ren types is common.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 8 10/18/05

Implementing observation definitions in DART

Give the observation type a name.
Associate the observation type with a generic type.

Four operations must be supported for each observation type:
1. Compute forward operator given (extended) state vector.
2. Read any extra information not in obs_def type from file.
(For instance, location and beam angle for radar).
3. Write any extra information not in obs def type to file.
4. Get any extra information via interactive read of standard in.

This is done in a special obs_def mod.

A special obs_def mod is extended F90.
Contains special comments that guide the DART preprocess program

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 9 10/18/05

Implementing observation definitions in DART
DART preprocess program creates obs _def mod, obs kind _mod

(DEFAULT _obs_def _mod.FIp »-(0bs_def_mod.fo)

Special obs_def module 1
Example:
obs_def reanalysis_bufr_mo

: preprocess ‘

Special obs_def module n
Example:
obs _def radar_mod

(DEFAULT_obs_kind_mod.FI) »(0bs_kind_mod.f9)

Namelist preprocess _nml lists all special obs_def modules to be used
(Names oberauLT Faos and preprocessed f90s can be changed, too’

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 10 10/18/05

Implementing observation definitions in DART
DART preprocess program creates obs _def mod, obs kind _mod

(DEFAULT _obs_def _mod.FIp »-(0bs_def_mod.fo)

Special obs_def module 1
Example:
obs_def reanalysis_bufr_mo

: preprocess ‘

Special obs_def module n
Example:
obs _def radar_mod

(DEFAULT_obs_kind_mod.FI) »(0bs_kind_mod.f9)

If no special obs_def modules are selected, can do identity obs. only.
DEFAULT modules have special comment lines to help preprocess.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 11 10/18/05

Implementing observation definitions in DART

Six special sections are required in a special obs_def mod.
REQUIRED comment strings start and end each section.

All lines in special sections must start with F90 comment, !
Use obs def 1d state vector mod.f90 as an example here:

1. Define the observation types and associated generic types:

| BEGIN DART PREPROCESS KIND LIST

| RAW_STATE_VARIABLE, KIND_RAW_STATE_VARIABLE
| RAW_STATE_1D INTEGRAL, KIND 1D INTEGRAL
| END DART PREPROCESS KIND LIST

Two observation types defined:
a.RAW_STATE_VARIABLE: gJeneric typ&IND_RAW_STATE_VARIABLE
D. RAW_STATE_1D_INTEGRAL generic typ&IND_1D_INTEGRAL

Generic kinds must be in parameter list in DEFAULT _obs_kind_mod

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 12 10/18/05

Implementing observation definitions in DART
Six special sections are required in a special obs_def mod.

2. Use statements required for use of obs def 1d state vector mod

| BEGIN DART PREPROCESS USE OF SPECIAL OBS DEF MODULE

I 1 Comments can be included by having a second ! at the start of the line

| use obs def 1d state _mod, only : write_1d_integral, read_1d_integral, &
' interactive_1d_integral, get_expected 1d _integral

I END DART PREPROCESS USE OF SPECIAL OBS DEF MODULE

This special obs_def module has 4 subroutines which need to be use:

A special obs_def module can also have its own namelist if needed.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 13 10/18/05

Implementing observation definitions in DART
Six special sections are required in a special obs_def mod.

3. Case statements required to compute expected observation

| BEGIN DART PREPROCESS GET_EXPECTED_OBS FROM_DEF

! case(RAW_STATE VARIABLE)

! call interpolate(state, location, 1, obs_val, istatus)

! case(RAW_STATE_1D INTEGRAL)

! call get_expected 1d integral(state, location, obs def%key, obs_val, istatus)
| END DART PREPROCESS GET_EXPECTED_OBS FROM_DEF

Each observation type being defined must appear in a case.
Here, theraw_STATE VARIABLE Observation type is a simple
Interpolation using the assim_mod&erpolatesubroutine.

TheRAW_STATE_1D_INTEGRALIS more complicated and calls the
get_expected _1d integral the special obs_def module.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 14 10/18/05

Implementing observation definitions in DART
Six special sections are required in a special obs_def mod.

4. Case statements required to read extra info from obs_sequence file

| BEGIN DART PREPROCESS READ OBS_DEF

| case(RAW_STATE_VARIABLE)

! continue

I case(RAW_STATE_ 1D INTEGRAL)

! call read_1d integral(obs_def%key, ifile, fileformat)
| END DART PREPROCESS READ _OBS DEF

RAW_STATE_VARIABLEEQUIreS no extra information, just continue.
(Case statement and continue required for all observation types)

RAW_STATE 1D INTEGRAL requires extra information.
This is read with read_1d_integral subroutine.
Extra info stored in obs_def 1d state vector mod, indexed by ke

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 15 10/18/05

Implementing observation definitions in DART
Six special sections are required in a special obs_def mod.

5. Case statements required to write extra info from obs_sequence file

| BEGIN DART PREPROCESS WRITE_OBS_DEF

I case(RAW_STATE_ VARIABLE)

! continue

I case(RAW_STATE 1D INTEGRAL)

! call write_1d_integral(obs_def%key, ifile, fileformat)
| END DART PREPROCESS WRITE_OBS_DEF

Same deal as for read

obs def 1d_ state vector can read and write whatever it wants to
describe the raw_state 1d_integral observation.

Only requirement is that it can read what it writes!

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 16 10/18/05

Implementing observation definitions in DART
Six special sections are required in a special obs_def mod.

6. Case statements required to interactively create extra info.

| BEGIN DART PREPROCESS INTERACTIVE_OBS_ DEF
| case(RAW_STATE_VARIABLE)

! continue

I case(RAW_STATE_ 1D INTEGRAL)

! call interactive_1d_integral(obs_def%key)

| END DART PREPROCESS INTERACTIVE_OBS_DEF

DART uses interactive input from standard in to implement OO stuff.
It's nice to be able to do a keyboard create for testing.

Standard procedure: make file that drives creation (see section 17)

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 17 10/18/05

Implementing observation definitions in DART
What is the observation definition ‘extra information’?
obs _def 1d state vector mexhmple.

Boxcar i
Envelope Hi/llf\Nldth raw_state_1d integrdiorward
. | operator has 3 parameters:
Location

1. Half-width of envelope,

L — 2. Shape of envelope,

3. Number of quadrature points.

Quadrature Points (4)

Forward operator is sum of values
Interpolated to quadrature points.

Interactive creation asks for these 3, then stores them with key.

First write outputs total number of these obs plus params for ALL.

First read reads number, params for ALL, and stores them with key.
(Could also write information for each obs separately).

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 18 10/18/05

Available special obs_def modules:

1. obs def 1d state vector mod: interpolations and integrals for
models with one-dimensional domain, single state vector type.

2. 0bs _def reanalysis bufr_mod: All types of observations available in
NCEP reanalysis bufr files. Most types from operational bufr files.

3. obs_def metar_mod: 10 meter surface winds, 2 meter surface
temperature and specific humidity, surface pressure.

4. obs_def dew_ point_mod: dew point temperature, free atmosphere
or 2 meter surface.

5. obs_def radar _mod: doppler radial velocity and reflectivity.

6. obs_def gps_mod: GPS radio occultation refractivity.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 19 10/18/05

General procedure for DART filtering with special obs_def modules

1. Compile and run preprocess: specify absolute or relative paths for al
required special obs_def modulegnmeprocess nml, input_files

2. For all special obs def modules that are ‘usedilis/ def mod
add path tgpath_names_filéor all but preprocess.

3. Compile all other required program units.

4. Select observation types to be assimilated or evaluated
In obs_kind_nml

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 20 10/18/05

How and where to compute forward observation operators...
Keeping models and observation definitions modular is hard.

DART recommendation: models should be able to spatially interpolate
their state variables.

Forward observation operators in special obs_def modules should not
expect more than this from models.

This may be too idealistic:
1. Models could do complicated forward operators for efficiency.
2. This makes it difficult to link models to DART in F90.

Different version of assim_model could help to buffer this.

Area for ongoing research.

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 21 10/18/05

/home/jla/DART_TUTORIAL/DART/tutorial/section21/tut_section21.fm 22 10/18/05

