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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

Assumes that prior and observation are sup
Is it model error or random chance?

−4 −2 0
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

Prior PDF

S.D.

Obs. Likeli

Expected Separatio

Actual 4.714 SDs

σprior
2 σ+



6/9/05

rror Tolerant Filter

-observed inconsistency

.

rior and observation.

2 4

hood

S.D.
tion

obs
2

Anderson: Ensemble Tutorial 3

Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

2. Expected(prior mean - observation) =

3. Inflating increases expected separation.
Increases ‘apparent’ consistency between p
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Variance inflation for Observations: An Adaptive E

1. For observed variable, have estimate of prior

Distance, D, from prior mean y to obs. is

Prob. yo is observed givenλ:
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati

Assume some form for prior distribution forλ (Gau
(Could assume other type of distribution or eve
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati

V
t
s

P
a

D
s
v

1 2

0.01

0

0.01

Obs. Space Inflation Factor: λ

λ: Posterior − Prior

Max density shifted to right

−1 0 1 2 3 4
0

0.2

0.4

0.6

Observation: y

Obs. Likelihood

p λ tk Ytk
,( ) p yk λ( ) p λ tk Ytk 1–

,( ) normaliz⁄=



6/9/05

rror Tolerant Filter

on factor,λ.

ne option is to use
aussian prior for
.

elect max of pos-
erior as mean of
pdated Gaussian.

o a fit for updated
tandard deviation.

.ation
Anderson: Ensemble Tutorial 13

Variance inflation for Observations: An Adaptive E

Use Bayesian statistics to get estimate of inflati
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
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Observation Space Computations with Adaptve 

1. Compute updated inflation distribution,

2. Inflate ensemble using mean of updatedλ distribu
3. Compute posterior for y using inflated prior.
4. Compute increments from ORIGINAL prior e
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Adaptive Observation Space Inflation 

Controlled bycov_inflate, cov_inflate_sd, sd_lower
deterministic_cov_inflate in assim_tools_nml.

Full implementation:
Setcov_inflate to positive initial value, for inst
Setcov_inflate_sd to intitial value, for instance
Setsd_lower_bound to 0.0, no limit on how sm

Try this in Lorenz-96 (verify other aspects of inp
To facilitate model error experiments, use 80

(setens_size = 80 in filter_nml).

This is a very expensive algorithm.
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Algorithmic variants:

1. Increase prior y variance by adding random g

As opposed to ‘deterministics’ linear inflating

This is controlled bydeterministic_cov_inflate in

True => inflate, False => random noise.

2. Just have a fixed value for obs. spaceλ

Cheap, handles blow up of state vars uncon

We already tried this in section 9.
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Algorithmic variants:

3. Fix value ofλ standard deviation.
Greatly reduces cost.
Avoids σλ getting small (error model filter div
Have to have some intuition about the value
This appears to be most viable option for lar
Value ofσλ = 0.05 works for very broad rang
This is a sampling error closure problem (ak

To fix σλ, Setcov_inflate to positive initial value, f
Setcov_inflate_sd to fixed value, for instance 
Setsd_lower_bound to same value as cov_infl

(Can’t get any smaller).

Try this in lorenz-96. Look at how the inflatio
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Potential problems

1. Very heuristic.

2. Error model filter divergence (pretty hard 

3. Equilibration problems, oscillations inλ with 

4. Amplifying unwanted model resonances (

Try turning this on in 9var model.

Fixed 0.05 forcov_inflate_sd, sd_lower

Behavior set by value ofcov_inflate in a
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Simulating Model Error in 40-Variable Lore

Inflation can deal with all sorts of errors, includi

Can simulate model error in lorenz-96 by chang

Synthetic observations are from model with forc

Use forcing in model_nml to introduce model er
Try forcing values of 7, 6, 5, 3 with and with

The F = 3 model is periodic, looks very little like
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Simulating Model Error in 40-Variable Lore

40 state variables: X1, X2,..., XN

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F;
i = 1,..., 40 with cyclic indices
Use F = 8.0, 4th-order Runge-Kutta with dt=0.0
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Experimental design: Lorenz-96 Model E

Truth and observations comes from long run wi

200 randomly located (fixed in time) ‘observing 

Independent 1.0 observation error variance

Observations every hour

σλ is 0.05, mean ofλ adjusts but variance is fixed

4 groups of 20 members each (80 ensemble m

Results from 10 days after 40 day spin-up

Vary assimilating model forcing: F=8, 6, 3, 0

Simulates increasing model error
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Assimilating F=8 Truth with F=8 Ens
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Assimilating F=8 Truth with F=6 Ens
Model time series Mean va

Assimilation Results
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Assimilating F=8 Truth with F=3 Ens
Model time series Mean va

Assimilation Results
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Assimilating F=8 Truth with F=0 Ens
Model time series Mean va

Assimilation Results

Prior RMS Error, Spread, andλ Grow as Mod
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Base case: 200 randomly located obseratio

Assimilating Model Forcing, F Assim
(Error saturation is approximately

Prior RMS Error, Spread, andλ Grow as Mod
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Less well observed case, 40 randomly located
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