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Bayes rule:

Ensemble filters:Prior is available as finite sample

Don’t know much about properties of this samp
May naively assume it is random draw from ‘tru
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Bayes rule:

How can we take product of sample with contin

Fit a continuous (Gaussian for now) distribution

p A BC( )
p B AC( ) p A C( )

p B C( )
------------------------------------------

p B(
p∫ B(

----------= =

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y

Prior PDF



6/12/05

ly always Gaussian).

e methods below.
obs. likelihood.

AC) p A C( )
x)p x C( )dx

---------------------------------

2 4

bs. Likelihood
Anderson: Ensemble Tutorial 4

Bayes rule:

Observation likelihood usually continuous (near

If Obs. Likelihood isn’t Gaussian, can generaliz
For instance, can fit set of Gaussian kernels to 
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Bayes rule:

Product of prior Gaussian fit and Obs. likelihood

Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.

p A BC( )
p B AC( ) p A C( )

p B C( )
------------------------------------------

p B(
p∫ B(

----------= =

−4 −2 0
0

0.2

0.4

0.6

Prior Ensemble

P
ro

ba
bi

lit
y

Prior PDF

O

Posterior PDF



6/12/05

nclear.
rform.
, etc.

2 3
Anderson: Ensemble Tutorial 6

Sampling Posterior PDF:

There are many ways to do this.

Exact properties of different methods may be u
Trial and error still best way to see how they pe
Will interact with properties of prediction models
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Sampling Posterior PDF:

Just draw a random sample (filter_kind=5 inassim_

NOTE: When trying filter_kinds other than 1,sort_
assim_tools_nml should be .true. (see section 
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Sampling Posterior PDF:

Just draw a random sample (filter_kind=5 in as

Can ‘play games’ with this sample to improve (m

Example: Adjust the mean of sample to be exa
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Sampling Posterior PDF:

Just draw a random sample (filter_kind=5 in as

Can ‘play games’ with this sample to improve (m

Example: Adjust the mean of sample to be exa
Can also adjust the variance to be ex
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Sampling Posterior PDF:

Just draw a random sample.

Might also want to eliminate rare extreme outlie

NOTE: Properties of these adjusted samples ca
How these properties interact with rest of assim
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Sampling Posterior PDF:
Construct a ‘deterministic’ sample with certain f

For instance: Sample could have exact mean a

This is insufficient to constrain ensemble, ne
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just kurtosis).

an in large sample limit)
djusting quadratically).
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Sampling Posterior PDF:
Construct a ‘deterministic’ sample with certain f

(filter_kind=6 in assim_tools_nml; manually ad

Example: Exact sample mean and variance.
Sample kurtosis is 3 (expected value for Gaussi
(Constructed by starting uniformly spaced and a
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Sampling Posterior PDF:
Construct a ‘deterministic’ sample with certain f

(filter_kind=6 in assim_tools_nml; manually ad

Example: Exact sample mean and variance.
Sample kurtosis 2: less extreme outliers, less d
Avoiding outliers might be nice in certain applic
Sampling heavily near mean might be nice.
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Sampling Posterior PDF:

First two methods depend only on mean and va

Example: Suppose prior sample is (significantly
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Sampling Posterior PDF:

First two methods depend only on mean and va

Example: Suppose prior sample is (significantly

Might want to retain additional information from
Recall that Ensemble Adjustment Filter tried
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

‘Classical’ Monte Carlo Algorithm for Data Assi

Warning: earliest refs have incorrect algorithm (
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Again, fit a Gaussian to sample.
Are there ways to do this without computing pri
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Generate a random draw from the obs. likelihoo
Associate it with the first sample of prior ensem
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Proceed to associate a random draw from obs.
This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.’ en
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Proceed to associate a random draw from obs.
This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.’ en
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Proceed to associate a random draw from obs.
Earliest publications associated mean of obs. lik

This resulted in insufficient variance in poste
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Have sample of joint prior distribution for observ
Adjusting the mean of obs. sample to be exact 
Adjusting the variance may further improve per
Outliers are potential problem, but can be remo
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

For each prior mean/obs. pair, find mean of pos
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Prior sample standard deviation still measures uncerta
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Prior sample standard deviation still measures uncerta

Obs. likelihood standard deviation measures uncert
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Take product of the prior/obs distributions for fir
This is standard Gaussian product.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Mean of product is random sample of posterior.
Product of random samples is random samp
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKF) (filter_kind=2 in a

Posterior sample maintains much of prior samp
(This is more apparent for larger ensemble s

Posterior sample mean and variance converge to
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Can retain more correct information about non-
Can also be used for obs. likelihood term in pro
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Usually, kernel widths are a function of the sam
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Usually, kernel widths are a function of the sam
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Approximate prior as sum of Gaussians centere
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Estimate of prior is normalized sum of all kerne
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Apply distributive law to take product.
Product of sum is sum of products.

−4 −3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

O



6/12/05

ols_nml).

ood.
2 3 4

bs. Likelihood
Anderson: Ensemble Tutorial 44

Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Compute product of first kernel with Obs. Likelih
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

But, can no longer ignore the weight term for pr
Kernels with mean further from observation get
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
More distant kernels have small impact on post
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
More distant kernels have small impact on post
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
More distant kernels have small impact on post
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
Closer kernels dominate posterior.

−4 −3 −2 −1 0 1
0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

O



6/12/05

ols_nml).

n.
2 3 4

bs. Likelihood
Anderson: Ensemble Tutorial 52

Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Continue to take products for each kernel in tur
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Final posterior is weight-normalized sum of kern

Posterior is somewhat different than for ensemb
ensemble Kalman filter (much less density i
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter_kind=3 in assim_to

Forming sample of the posterior can be problem
Random sample is simple.
Deterministic sampling is much more tricky here
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Ensemble Filter Algorithms:

Particle filter methods:

These are ‘classical’ ensemble methods from s

Size of ensembles required scales hyper-expon

Ensembles > 1000 required for models with > 4

This rules out naive application to any meaning

At present, nobody knows ways to attack this s
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Ensemble Filter Algorithms:

Particle filter methods (filter_kind=4 in assim_tool

Can use particle filters in a few dimensions.

DART provides a one-dimensional particle filter

Independent particle filter is used for updating e

PROBLEM: Inconsistency between updates for

This can probably be made to work in some cle
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What happens when these different methods are u

Are they significantly different?

Do some work better for different observation s

Can kernel filter deal better with distinct bimoda
With proper resampling, this should be the c
Somebody clever could probably make this 


