
rging
g
n be

tion
models
orm
 or

odel
core

ion.
lt for
pment
tion
del has
ften
ther
forced
teract

iven
o
t of
imila-

nda-
s in a

t a
on
t

with
ned

T also
d a
Overview of the Data Assimilation Research Testbed

Draft: 25 April, 2002

Goals:

Data assimilationis the term used in atmospheric and oceanic sciences for the process of me
observations with a model. Data assimilation makes observations more useful by convertin
diverse and heterogeneous observations to regularly spaced and uniform quantities that ca
interpreted more easily. At the same time, observational error can be reduced and informa
about model errors can be generated. In more advanced applications of data assimilation, 
can be improved by confronting them with data. Data assimilation can also be used to perf
Observing System Simulation Experiments (OSSE’s) which evaluate the impact of existing
proposed observations for particular applications.

The data assimilation problem requires the coordination of expertise in many diverse areas. M
developers, observational specialists, and statisticians trained to do the ‘filtering’ that is at the
of assimilation algorithms, must all combine expertise to do this problem in an efficient fash
However, software engineering and organizational practices have made it extremely difficu
experts in these different areas to interact. The result has been that data assimilation develo
efforts have generally been linked to a single model or observational set) Different assimila
methodologies have not been readily comparable because applying them to a different mo
involved too much effort. At the same time, model developers and observationalists have o
been tied to a single assimilation methodology without the ability to evaluate the abilities of o
methodologies. The result is an inefficient use of resources where every research group is 
to have significant in-house expertise in all three aspects of the problem and is unable to in
well with external groups.

Both the software and organizational barriers to improving this situation can be overcome. G
ongoing community activities to build coordinated software frameworks, it is now possible t
design a test-bed facility that would allow the naive combination of a numerical model, a se
observations, and a data assimilation methodology to produce assimilations. The Data Ass
tion Research Testbed (DART) is a prototype for an assimilation testbed facility with two fu
mental purposes: allowing assimilation algorithm developers to compare their methodologie
fair way; allowing model developers and observationalists to explore the efficacy of various
assimilation algorithms for their problems of interest. DART is designed to demonstrate tha
mature test-bed could greatly increase the rate of development of improved data assimilati
methodologies, in turn leading to improved datasets, better predictions, and a more efficien
design of observational systems.

Implementation:

DART is a software facility that allows a hierarchy of different classes of users to experiment
data assimilation algorithms. At the core of DART is a software infrastructure which is desig
to implement standardized interfaces to a wide array of models and observational sets. DAR
includes an assortment of data assimilation algorithms built on top of this infrastructure, an
February 3, 2004 1:02 pm 1



l of
 mil-
ART.
stent
 com-
ts is
ser
nd

’ of

a par-
les
d the

f such
serva-
ri-

m
 the
ment.

s from
nos-
nostic

ted
, etc.

ed
ribing
simila-
and
rior
tance,
of the

, etc.
te. In a
ots of
wide assortment of models, ranging from highly idealized dynamical systems with a handfu
variables to General Circulation Models (GCMs) which may be configured with more than a
lion state variables. A variety of both simulated and actual observation sets are also part of D
Actual observations are obtained from a variety of sources and converted to a format consi
with the DART software infrastructure. The generation of simulated observation sets (a key
ponent of OSSEs) using models and specified error characteristics for simulated instrumen
one of the central capabilities of DART. DART also maintains a variety of auxiliary tools and u
interfaces that allow users to experiment, combining assimilation methodologies, models, a
observations in ways that can shed new light on their problems of interest.

User views:

An overview of the capabilities of DART can be given by discussing a hierarchy of ‘user views
the facility.

View 1: Analysis of previously executed data assimilation experiments:

DART provides an assortment of analysis tools that can give insight into the performance of
ticular data assimilation experiment. These tools accept data from three different types of fi
which provide information about quantities related to observations, model state variables, an
behavior of the assimilation algorithm itself.

Observation space diagnostic files can provide information about the observing system itsel
as the values of observations assimilated, meta-data defining the location and kind of the ob
tions, error covariances of the observations, and, in synthetic observation assimilation expe
ments, the ‘true’ value of the observed quantity (what would have been measured with a
hypothetical instrument with no error). In addition, information from the assimilation algorith
related to observations is also available in these files. These can include information about
(prior and posterior) estimates of the observations generated during an assimilation experi
Since these (prior and posterior) estimates are formally probability distributions, information
could include an estimate of the mean, estimates of higher order moments, a set of sample
the distribution, or a variety of other information. However, all data in observation space diag
tics files must have associated meta-data that describes the observations themselves. Diag
tools are available to produce such things as plots of error as a function of time for a repea
observation, overall assessments of error from observations as a function of time or space

State space diagnostics files provide information about the model state variables (or extend
state variables that are functions of the state variables). These files contain meta-data desc
the location and kind of model state variables and associated data. For many models and as
tion experiments, state space diagnostic data can be (quasi-)regularly distributed in space 
time, but this is not a requirement. Often, it is natural to provide state space output of the (p
and posterior) model state estimate at the times for which observations are available. For ins
one might have the value of the (prior and posterior) model state estimates, some estimates
error associated with these estimates, the ‘true’ value in synthetic observation experiments
Diagnostic tools are available to produce cross section plots of the space-time state estima
GCM experiment these could include time sections of state estimates at a particular point, pl
February 3, 2004 1:02 pm 2



glo-

thm

ional

ining
s of
umeri-
fy
tails
emble
the (error of the) state estimate on a particular vertical or horizontal surface, time series of 
bally integrated error of a particular field, etc.

Assimilation diagnostic files provide information about the behavior of the assimilation algori
itself...

When available should have some examples of diagnostic output, initially from one-dimens
models, here.

View 2: Exploration of Assimilation Experiments

DART allows users to run a previously configured assimilation experiment, a program comb
an assimilation algorithm and a numerical model, with modified parameters or different set
previously defined observations. DART has been designed to make many options of both n
cal models and assimilation algorithms available for run-time modification. Users can modi
details of the numerical model (for instance the value of a diffusion coefficient in a GCM), de
of the assimilation algorithm (for instance, the number of ensemble members used in an ens

Diagnostic
Analysis
Tools.

User control
Input.

Observation
Space
Diagnostic File

Model State
Space
Diagnostic File

Assimilation
Diagnostic
File

View 1 of DART: Analysis of previously existing assimilation experiments
February 3, 2004 1:02 pm 3



et of

ata
-

act of
 are in
nostic

ran-90
 cre-
figu-
Kalman filter), or details of the output diagnostics (for instance, selecting some specific subs
model state variables for more intensive diagnostic output).

DART assimilation experiments ingest an observation sequence file which provides meta-d
defining the available observations as well as the observations themselves. A variety of pre
defined observation sequence files are available in DART to allow users to explore the imp
different observing systems on an assimilation experiment. The observation sequence files
the same format as observation space diagnostic files and can be analyzed using the diag
tools described in View 1 above.

The programs that execute the assimilation experiments are currently implemented as Fort
programs. Users can obtain access to particular configurations by either running previously
ated executables on DART computing facilities, or by obtaining source code along with con
ration management software that allows them to create executables on their own platform.

Assimilation algorithm
combined with numerical
model.

Diagnostic Files:
Observation space, state
space, and assimilation.

Observation
Sequence
File

Diagnostic
Control
Parameters

Assimilation
Algorithm
Control
Parameters

Model
Control
Parameters

View 2: Assimilation Experiment Exploration
February 3, 2004 1:02 pm 4



,
 times
lated by
te syn-
View 3: Synthetic observation / Observation System Simulation Experiments

Many interesting applications of data assimilation involve the use of synthetic observations
where a model and a specified observing system (including both observation locations and
as well as error characteristics) are used to generate observations that can then be assimi
the model. The same software that is used to perform assimilations can be used to genera
thetic observations.

Synthetic Observation
Sequence File

Synthetic Observation
Generation Tools and
numerical model

Observation Sequence
Definition File
(obs_sequence_time)

Observation Sequence
Creation Tools

Observation Set
Definition List File

Observation Set
Definition Creation
Tools

User Input

Model run
time parameters

Real Observation
Sequence (optional)
February 3, 2004 1:02 pm 5



to all
hese
ences
umeri-
s is an
nthetic
f

ical

al
ety of

 long
essible

‘syn-
t state
he

odel

tion

sed
ro-
at per-
DART allows users to specify sets of related observation definitions (a definition here refers
information about an observation except its time and the actual value of the observation). T
observation definitions can then be combined with information about time to generate sequ
of observation definitions. A sequence of observation definitions can be in concert with a n
cal model to generate synthetic observations using the model integration as input. The result
obs_sequence with synthetic values which can be used as input to View 2 experiments. Sy
observations can also be combined with real observations to explore the potential impact o
enhancing an existing observing system.

View 4: Adding new models

DART provides a great deal of software infrastructure to assist in modifying existing numer
models for use with data assimilation methods. Nevertheless, adding a model to DART will
require Fortran coding by someone who is intimately familiar with the details of the numeric
model. Once these interfaces are added, the model should be able to be tested with a vari
assimilation methodologies and to make use of existing observation sequences.

For a model to be compliant with DART, it must provide a set of basic capabilities.
1. The complete model state (in a formal sense) must be accessible in the form of a single
vector. A set of model state metadata associated with this long state vector must also be acc
in a standard format.

2. An ability to advance the model state in time must be provided. This facility can be either
chronous’, meaning that a Fortran90 callable subroutine to advance the model given an inpu
vector is provided, or ‘asynchronous’, meaning that a ‘script level’ mechanism to advance t
model given a file containing the long state vector is provided.

3. An ability to interpolate the model state variables to a given physical location within the m
domain, for instance a given latitude, longitude, and height.

A number of additional capabilities may be required for efficient operation in certain assimila
systems and are outlined below.

Detailed requirement for a DART compliant model. At the highest level, the model is acces
through a Fortran90 module named model_mod. The following public interfaces must be p
vided by the model. Where feasible, any interface may be replaced with a Fortran90 stub th
forms no operations.

1. function get_model_size()
Returns the length of the model state vector as an integer.

2. subroutine adv_1step(x, Time)
February 3, 2004 1:02 pm 6



ated
-
brou-

arge

s.

ctor.
le

ari-
teger
s pub-
ces-

e.
t

a
e
s

iable

 by a
tors
era-

ator

le
Advances a model for a single time step if this operation is defined. The time associ
with the initial model state is also required. This interface is only required if ‘synchro
nous’ model state advance is supported (the model is called directly as a Fortran90 su
tine from the assimilation programs). This is generally not the preferred method for l
models which can provide a stub for this interface.

real, intent(inout) :: x(:) State vector of length model_size.
type(time_type), intent(in) :: Time Gives time of the initial model state. Needed for

models that have real time state requirements, for
instance the computation of radiational parameter
Note that DART provides a time_manager_mod
module that is used to support time computations
throughout the facility.

3. subroutine get_state_meta_data(index_in, location, var_type)
Returns metadata about a given element, indexed by index_in, in the model state ve
The location defines where the state variable is located (at present, a variety of simp
location models for support of gridpoint models are provided) while the type of the v
able (for instance temperature, or u wind component) is returned by var_type. The in
values used to indicate different variable types in var_type are themselves defined a
lic interfaces to model_mod if required. Low order models in which var_type is not ne
sarily meaningful should simply return a single integer value.

integer, intent(in) :: index_in Index into the long state vector.
type(location_type), intent(out) :: location Returns location of indexed state variabl

The location should use a location_mod tha
is appropriate for the model domain. For
realistic atmospheric models, for instance, 
three-dimensional spherical location modul
that can represent height in a variety of way
is provided.

integer, intent(out), optional :: var_type Returns the type of the indexed state var
as an optional argument.

4. subroutine model_interpolate(x, location, type)
Given model state, returns the value of variable type interpolated to a given location
method of the model’s choosing. At present, this is the only support for forward opera
that is required from the model_mod. As observations with more complex forward op
tors are explored a significant additional complexity may be required for forward oper
interfaces.

real, intent(in) :: x(:) Model state vector.
type(location_type), intent(in) :: location Location to which to interpolate
integer, intent(in) :: type Integer indexing which type of state variab

is to be interpolated. Can be ignored for low
order models with a single type of variable.
February 3, 2004 1:02 pm 7



tended
ies.

r most

nts,
om-

sed.
-

el
ed

dius
at
each
t stor-

cated
sup-

ser-

ng

e

5. function get_model_time_step()
Returns the models base time step as a time_type. In the long run, a more general ex
interface may be required that specifies the models range of time stepping possibilit

6. subroutine end_model
Called when use of a model is completed to clean up storage, etc. Can be a stub fo
applications.

7. subroutine static_init_model()
Used for runtime initialization of a model, for instance calculating storage requireme
intializing model parameters, etc. This is the first call made to a model by any DART c
pliant assimilation routine.

8. subroutine init_time(i_time)
Returns the time at which the model will start if no input initial conditions are to be u
This is frequently used to spin-up models from rest, but is often not meaningfully sup
ported in comprehensive GCMs.

type(time_type), intent(out) :: i_time Model’s initial time.

9. subroutine init_conditions(x)
Returns default initial conditions for model; generally used for spinning up initial mod
states. For GCMs can conceivably just return 0’s if initial state is always to be provid
from input files.
real, intent(inout) :: x(:) Model state vector

10. subroutine model_get_close_states(o_loc, radius, number, indices, dist)
Returns the number of state variables that are within a given radius (the units for the ra
depend upon the location_mod module being used by the model) of an observation 
location o_loc. The indices in the long state vector as well as the distance between 
close state variable and the observation are also returned, provided there is sufficien
age available for them in the arrays indices and dist. This tends to be the most compli
routine for large models because it must be implemented in a very efficient fashion to
port a number of assimilation algorithms.

type(location_type), intent(in) :: o_loc Location of observation
real(r8), intent(in) :: radius Maximum distance between state and ob

vation
integer, intent(out) :: number Number of close state variables
integer, intent(out) :: indices(:) Indices of close state variables found in lo

model state vector. If allocated size of this
array is too small, only a subset of the clos
indices is returned. The model_mod gets to
decide what subset this is.
February 3, 2004 1:02 pm 8



vari-

the
els
ssoci-

 a
ble

it-

p. In
ne.
ough
state.
 this
create
 out
ecut-

 this
enta-

f new
, so

e the
real(r8), intent(out) :: dist Distance between observation and state 
ables indexed in indices array.

11. function nc_write_model_atts(ncFileID) result(ierr)
Function to write model specific attributes to a netCDF file. At present, DART is using
NetCDF format to output diagnostic information. This is not a requirement, and mod
could choose to provide output in other formats. This function writes the metadata a
ated with the model to a NetCDF file opened to a file identified by ncFileID.

integer, intent(in) :: ndFileID Integer file descriptor opened to NetCDF file
integer :: ierr Returned error code.

12. function nc_write_model_vars(ncFileID, statevec, copyindex, timeindex) result(ierr)
Writes a copy of the state variables to a NetCDF file. Multiple copies of the state for
given time are supported, allowing, for instance, a single file to include multiple ensem
estimates of the state.
integer, intent(in) :: ncFileID Integer file descriptor opened to NetCDF file
real(r8), intent(in) :: statevec(:) State vector
integer, intent(in) :: copyindex Integer index to which copy is to be written
integer, intent(in) :: timeindex Integer index of which time in the file is being wr

ten
integer :: ierr Returned error code.

Details on advancing models in time:
As noted above, one option for advancing models in time is to provide the interface adv_1ste
many cases, large models are very difficult to cast in terms of a Fortran90 callable subrouti
DART compliant assimilation modules are required to be able to advance models either thr
the adv_1step interface, or by allowing the operating system (script) to advance the model 
This second choice has been used predominantly when incorporating GCMs into DART. In
case, referred to as ‘asynchronous’ model advance, DART compliant assimilation routines 
a file containing the long state vector and the corresponding state time (routines for writing
this format are provided through the DART assim_model_mod module). The assimilation ex
able then waits for while external program(s) read the file, advance the state in time to the
requested time, and write a file with the updated state. The assimilation module then reads
updated state and proceeds. Examples of this implementation can be seen in DART implem
tions of the GFDL B-grid dynamical core and the CAM2.0 AGCM.

View 5: Adding new observation sets

The tools used to generate synthetic observations are readily adapted to the introduction o
observational data sets into DART. Real observation sets are notoriously difficult to work with
this process is likely to require effort by someone with expertise in a particular data set. Onc
February 3, 2004 1:02 pm 9



ty of

ring
ts on
g

 all
par-

lace
set is available in the format of a DART observational sequence, it can be used with a varie
assimilation techniques and models.

View 6: Adding new assimilation techniques:

Although the DART infrastructure is designed to ease this process, it is likely that, at least du
the early stages of the project, adding new assimilation algorithms may lead to requiremen
the observation or model portions of DART that are unanticipated. This suggests that addin
assimilation techniques may require some assistance from model experts in order to allow
models to be fully compliant. However, the promise of being able to make broad and fair com
isons of different assimilation algorithms is likely to encourage assimilation experts to try to p
new algorithms in DART.
February 3, 2004 1:02 pm 10


