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. _ P(BIACQP(AIC) _ P(BJAC)P(A/C)
payes rulep(A BO p(BIC) [p(B[¥)P(x C)dx

Ensemble filtersPrior is aailable as finite sample.
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Don’t know much about properties of this sample.
May naively assume it is random draw from ‘truth’.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rule;p(A| BC) o(B| ) [P(BIX)P(x] C)dX

How can we take product of sample with continuous likelihood?
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Fit a continuous (Gaussian for now) distribution to sample.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Observation likelihood usually continuous (nearly always Gaussian).
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If Obs. Likelihood isn’'t Gaussian, can generalize methods below.
For instance, can fit set of Gaussian kernels to obs. likelihood.
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. _ P(B[AQP(AIC) _ p(B[AC)p(A C)
Bayes rulep(A| BC) 5(B|C) [P(BIX)P(x] C)dX

Product of prior Gaussian fit and Obs. likelihood is Gaussian.
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Computing continuous posterior is simple.
BUT, need to have a SAMPLE of this PDF.
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Sampling Posterior PDF:

There are many ways to do this.
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Exact properties of different methods may be unclear.
Trial and error still best way to see how they perform.
Will interact with properties of prediction models, etc.
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Sampling Posterior PDF:

Just draw a random sample (filter _kind=mgsim_tools nml
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NOTE: When trying filter _kinds other thansigrt_obs_inan
assim_tools_nnshould betrue. (see section 10).
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Sampling Posterior PDF:

Just draw a random sample (filter_kind=5 in assim_tools _nml).
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Can ‘play games’ with this sample to improve (modify) its properties.
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Example: Adjust the mean of sample to be exact.
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Sampling Posterior PDF:

Just draw a random sample (filter_kind=5 in assim_tools _nml).
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Can ‘play games’ with this sample to improve (modify) its properties.

Example: Adjust the mean of sample to be exact.
Can also adjust the variance to be exact.
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Sampling Posterior PDF:

Just draw a random sample.
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Might also want to eliminate rare extreme outliers.

NOTE: Properties of these adjusted samples can be quite different.
How these properties interact with rest of assimilation is open question
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Sampling Posterior PDF:
Construct a ‘deterministic’ sample with certain features.
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For instance: Sample could have exact mean and variance.

This is insufficient to constrain ensemble, need other constraints.
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Sampling Posterior PDF:
Construct a ‘deterministic’ sample with certain features
(filter_kind=61in assim_tools nmimanually adjust kurtosis).
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Example: Exact sample mean and variance.
Sample kurtosis is 3 (expected value for Gaussian in large sample limit
(Constructed by starting uniformly spaced and adjusting quadratically)
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Sampling Posterior PDF:
Construct a ‘deterministic’ sample with certain feature
(filter_kind=61in assim_tools nmimanually adjust kurtosis).
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Example: Exact sample mean and variance.
Sample kurtosis 2: less extreme outliers, less dense near mean.

Avoiding outliers might be nice in certain applications.
Sampling heavily near mean might be nice.
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Sampling Posterior PDF:

First two methods depend only on mean and variance of prior sample
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Example: Suppose prior sample is (significantly) bimodal?
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Sampling Posterior PDF:

First two methods depend only on mean and variance of prior sample
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Example: Suppose prior sample is (significantly) bimodal?

Might want to retain additional information from prior.
Recall that Ensemble Adjustment Filter tried to do this (Section 1)
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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‘Classical’ Monte Carlo Algorithm for Data Assimilation.

Warning: earliest refs have incorrect algorithm (more in a minute).
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Again, fit a Gaussian to sample.
Are there ways to do this without computing prior sample stats?
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Again, fit a Gaussian to sample.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Generate a random draw from the obs. likelihood.
Associate it with the first sample of prior ensemble.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Proceed to associate a random draw from obs. with each prior sample

This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.” ensemble Kalman filter.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Proceed to associate a random draw from obs. with each prior sample

This has been called ‘perturbed’ observations.
Algorithm sometimes called ‘perturbed obs.” ensemble Kalman filter.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Proceed to associate a random draw from obs. with each prior sample
Earliest publications associated mean of obs. likelihood with each priol
This resulted in insufficient variance in posterior.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Have sample of joint prior distribution for observation and prior MEAN
Adjusting the mean of obs. sample to be exact improves performance
Adjusting the variance may further improve performance.

Outliers are potential problem, but can be removed.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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For each prior mean/obs. pair, find mean of posterior PDF.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Prior sample standard deviation still measures uncertainty of prior mean estimats
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Prior sample standard deviation still measures uncertainty of prior mean estimats

Obs. likelihood standard deviation measures uncertainty of obs. estimate.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Take product of the prior/obs distributions for first sample.
This Is standard Gaussian product.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Mean of product is random sample of posterior.
Product of random samples is random sample of product.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Repeat this operation for each joint prior pair.

Anderson: Ensemble Tutorial 30 6/12/05



Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Repeat this operation for each joint prior pair.
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Ensemble Filter Algorithms:

Ensemble Kalman Filter (EnKHjiler _kind=2in assim_tools_nml
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Posterior sample maintains much of prior sample structure.

(This is more apparent for larger ensemble sizes).
Posterior sample mean and variance converge to ‘exact’ for large sample
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Can retain more correct information about non-Gaussian priors.
Can also be used for obs. likelihood term in product (not shown here).
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Usually, kernel Widths are a function of the sample variance.
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Usually, kernel widths are a function of the sample variance.
Almost avoids using prior sample variance.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Approximate prior as sum of Gaussians centered on each sample.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Estimate of prior is normalized sum of all kernels.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Apply distributive law to take product.
Product of sum is sum of products.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Compute product of first kernel with Obs. Likelihood.
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Ensemb

Ensemble Filter Algorithms:

le Kernel filter (filter_kind=3 in assim_tools_nml).

0.8f

O
o)

Probability
o
D

But, can no longer ignore the weight term for product of Gaussians.

Kernels
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Continue to take products for each kernel in turn.
More distant kernels have small impact on posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Continue to take products for each kernel in turn.
More distant kernels have small impact on posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).

o o
(@)) 00

Probability
o
D

-4 2
Continue to take products for each kernel in turn.
More distant kernels have small impact on posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Continue to take products for each kernel in turn.
Closer kernels dominate posterior.
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Final posterior is weight-normalized sum of kernel products.

Posterior is somewhat different than for ensemble adjustment or
ensemble Kalman filter (much less density in left lobe).
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Ensemble Filter Algorithms:

Ensemble Kernel filter (filter _kind=3 in assim_tools nml).
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Forming sample of the posterior can be problematic.

Random sample is simple.
Deterministic sampling is much more tricky here (few results available)

Anderson: Ensemble Tutorial 55 6/12/05



Ensemble Filter Algorithms:
Particle filter methods:
These are ‘classical’ ensemble methods from statistical literature.
Size of ensembles required scales hyper-exponentially with model size
Ensembles > 1000 required for models with > 4 degrees of freedom.
This rules out naive application to any meaningful atmospheric model.

At present, nobody knows ways to attack this so no details here.
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Ensemble Filter Algorithms:
Particle filter methoddi{ter kind=4in assim_tools nnnl
Can use patrticle filters in a few dimensions.
DART provides a one-dimensional particle filter.
Independent particle filter is used for updating each observation.
PROBLEM: Inconsistency between updates for different observations.

This can probably be made to work in some clever way!
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What happens when thesefelient methods are used in Lorenz_63?
Are they significantly different?

Do some work better for different observation sets?

Can kernel filter deal better with distinct bimodality of Lorenz_63?

With proper resampling, this should be the case.
Somebody clever could probably make this work.
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