
DART Prototype rough design description.

Assimilation
(Ensemble, var.)

Assim_model
Observation
Operators

State space output
files (various freqs
and quantities); also

Observation space
output files (various
frequencies and
quantities)

Assimilation space
output files (error
measures, assim
space time series?),extended state space

Observation
Sequence

Observation
Assimilation
Parameters

Model
Parameters

Diagnostic
Parameters

covariances...

A schematic of a DART prototype.

TIME

Standard
Diagnostic
Packages

Observation
Definition
Specification
Tools

Location

For Perfect
Model Exps.
OSSE’s,
Targeting, etc.

Definitions

(Real or synthetic)
Sequences
obs_set_specification.fm April 23, 2002 10:41 am 1

Obs_kind (temp,
radiance, whatever)
Defines part of
forward operator.

Location; Defines spatial
location part of an
observation (domain but not
model specific, also used by

Obs_def (defines a single

observation in isolation)

Error Variance

Obs_set_def: Groups many

simultaneous observations

definitions

Observational
Error
Covariances

Observed
values

Time

Other params

that define obs.

Obs_sequence: Defines a
temporally ordered
sequence of obs_sets_time

model side)

Obs_model: computes
forward operators given
state, location, obs_kind.
This is both model and
domain specific.

Assim_model: adds general
set of assimilation useful
interfaces to model.

Much of the ‘meta-data’
passed here is done by
off-line documentation.
Automating this appears
to be long-term research
problem.

Direct use
by highest
level assim.
methods, too.

Set_def_list: Defines a
group of obs_set_defs
including permanent storage
and hierarchical subsets

Obs_set_time: Implemented as sub-class
in obs_set module. Associates time with
an obs_set in a set_def_list.

Obs_set: associates one or more
copies of observed values with an
obs_set_time.

or Obs_sets

Rough module hierarch
for infrastructure layers
of DART.
obs_set_specification.fm April 23, 2002 10:41 am 2

rface
from
.

umber
 of all

 an
value

bserva-

n to

f the

copies
 This

ined in

quence.

associ-
value

 argu-
1. Rough class specifications for DART below assimilation level

Each class begins with a crude type definition and is followed by a series of Fortran class inte
descriptions. The interfaces are roughly ordered by class with initialization, calls to get data
the class, calls to set data in the class, logical queries, input, output, and finally termination

I. obs_sequence (Called obs stream by operational folks)

This is the highest level class on the observations side.

Defines type obs_sequence_type
which contains num_copies of data, meta_data associated with each copy, the maximum n
of obs_sets in the sequence and the current number, a set_def_list that contains defintions
observation sets, and a time ordered list of observations sets.

1. function init_obs_sequence(max_obs_sets, num_copies_in, copy_meta_data) initializes
obs_sequence with room for max_obs_sets. Optional argument num_copies_in with default
1 (note that 0 is a legal value) specifies the number of copies of data associated with each o
tion in the sequence.

1b. subroutine obs_sequence_copy(seq_out, seq_in) does a comprehensive copy of seq_i
seq_out allocating all required storage.

1c. subroutine obs_sequence_def_copy(seq_out, seq_in) copies only the definition parts o
sequence seq_in into seq_out which will have num_copies set to 0 by definition.

1d. subroutine inc_num_obs_copies(seq, inc, copy_meta_data) increments the number of
of the data in the sequence by inc and adds the additional meta data for these new copies.
requires an ugly reallocation in the current implementation.

1e. function get_num_obs_copies(sequence) returns the number of copies of the data conta
this sequence.

2. function get_num_obs_sets(sequence) returns the number of observation sets in this se

3. subroutine get_obs_values(sequence, index, obs, copy_in) returns the observed values
ated with the index-th observation set in the sequence. Optional argument copy with default
of 1 indicates which copy of the associated data is to be returned.

4. subroutine set_obs_values(sequence, index, obs, copy_in) set the observed values with
ments as in get_obs_values.
obs_set_specification.fm April 23, 2002 10:41 am 3

e of a
values.

ted with

t of the

f model
-th

 each
.

value of
returns
e num-

 index-

the

et must

nce.

uence.

uence
5. subroutine set_single_obs_value(sequence, index, num_obs, obs, copy_in) sets the valu
single observation in the set, indexed by num_obs, with all other arguments as in set_obs_

7. function get_copy_meta_data(obs_sequence_type, index) returns the meta-data associa
the indexth copy of the observations. Index is an optional argument with default value 1.

8. function get_obs_set(sequence, index) returns the index-th obs_set in the sequence.

9. subroutine get_diag_obs_err_cov(sequence, index, covariance) returns the diagonal par
covariance of the observations in the index-th observation set in the sequence.

10. subroutine get_num_close_states(sequence, index, radius, num) returns the number o
state variables that are closer than distance radius to each of the observations in the index
observation set in the sequence.

11. subroutine get_close_states(sequence, index, radius, num, indices, distance) as in
get_num_close_states but returns a list of the indices of each state variable that is close to
observation as well as the distance between the close state variables and the observations

12. subroutine get_expected_obs(sequence, index, state, obs, num) returns the expected
the index-th observation set in the sequence given the state vector in state. The array obs
the expected values. If the optional argument num is present, only the expected value of th
th observation in the specified observation set is returned.

13. function get_obs_sequence_time(sequence, index) returns the time associated with the
th observation in the sequence.

14. function get_num_obs_in_set(sequence, index) returns the number of observations in
index-th observation_set in this sequence.

15. subroutine add_obs_set(sequence, obs_set) adds the obs_set to this sequence. The s
have an ending time (time for now) that is later than the last observation set currently in the
sequence.

16. subroutine associate_def_list(sequence, def_list) associates the def_list with this seque
For now, a sequence must be associated with exactly one def_list.

17. subroutine write_obs_sequence(file_id, sequence) outputs the sequence to the file.

18. function read_obs_sequence(file_id) reads an obs_sequence written by write_obs_seq

19. function read_obs_sequence_def(file_id) reads an obs_sequence file written by
write_obs_sequence but only uses the definition information (i.e. num_copies is 0 in the seq
created).
obs_set_specification.fm April 23, 2002 10:41 am 4

ted
lit into
tion
s one

n
s if
d the
aken
 aver-
 that

ations
of cop-

.
bser-

serva-
r of
et_time

set
data.

ocating

ortion
nd no

ations
quires

of the
II. Obs_set

Defines a group (hierarchical set_def_list) of observation set definitions that are all associa
with the same time interval and the associated observation values. This could actually be sp
two separate modules, one defining an obs_set_time (a time ordered sequence of observa
groups with the associated times) and another defining an obs_set which in addition include
or more copies of values associated with the observations.

This pushes time interpolation to this rather high level. This should be re-evaluated at desig
review. The higher level assimilation algorithms would need to keep states at different time
model won’t return stuff at required time. In mature implementation, time must be general an
lower level assim_model class must return info on the interval over which an observation is t
(weighted time interval with delta function as simplest case, followed by average, weighted
age, etc.). The higher level assimilation will have to decide what to do with observation sets
are defined over more generalized time intervals.

Defines type obs_set_type
which contains a two dimensional array of obs, the first dimension is the number of observ
associated with the corresponding set_def observation group and the second is the number
ies of data available for each observation.
A two dimensional logical array missing which is if the corresponding obs are not available
The number of copies and the number of observations, a time_type giving the time of this o
vation, and an integer index into the set_def_list associated with this set. At present, an ob
tion sequence (next level up) can only be associated with a single set_def_list. The numbe
copies is set to 0 and no data is associated when this structure is used to represet an obs_s
type.

1. function init_obs_set(set_def_list, index, num_copies): Initializes the storage for an obs_
associated with the index-th set in the set_def_list and with num_copies of the associated
Num_copies is optional with a default value of 1.

1b. subroutine obs_set_copy(set_out, set_in) does a comprehensive copy of an obs_set all
all required storage and copying set_in to set_out.

1c. subroutine obs_set_time_copy(set_out, set_in) copies just the obs_set_time definition p
of set_in to set_out allocating all storage as required. The result has num_copies set to 0 a
data associated with the defintions.

1d. subroutine inc_num_obs_copies(set, inc) increments the number of copies of the observ
associated with an obs_set. This is required by the current static allocation of storage and re
a reallocation and copy. inc specifies the number of additional copies to be added.

1e. function get_obs_def_index(obs_set) returns the index in the set_def_list of the parent
set_def hierarchy for this observation set.
obs_set_specification.fm April 23, 2002 10:41 am 5

set.

that
in ele-
xtend
hich

set. The
t of 1.

 single
 indi-

nding
nt

al asso-

d false

issing
ional
 of 1.

e an

ing out

r.

n

the
1f. function get_obs_set_time(obs_set_type :: set): Returns a generalized_time_type that
describes the characteristics of this set of observations.

1g. function get_num_obs(obs_set) returns the number of observations in this observation

2. subroutine get_obs_values(obs_set_type, obs, index) : Returns a vector of ‘real’ values
came from the instrument(s). Some value might be returned if the data is missing for certa
ments, but this is not defined. If integer or other types of obs were happening might have to e
or overwrite this, but can’t think of a relevant case. The optional argument index indicates w
copy of the observation data should be returned with a default of 1.

4. subroutine set_obs_values(obs_set, obs, copy) : Sets the observation values for an obs_
optional argument copy selects which copy of the observations should be set with a defaul

4a. subroutine set_single_obs_value(obs_set, num_obs, obs, copy_in) set the value of the
num_obs-th observation in the obs_set to the value in obs. The optional copy_in argument
cates which copy of the observation data should be set with a default of 1.

5. subroutine set_obs_set_missing(obs_set, missing, index_in): The observations correspo
to any true elements are set to the values in the logical array missing. The optional argume
index_in indicates which copy of the missing flags is to be set with a default value of 1..

6. subroutine set_obs_set_time(obs_set_type, generalized_time_type) sets the time interv
ciated with a particular observation.

7. function contains_data(obs_set_type) returns logical, true if this set has observations an
if it only has a definition.

8. subroutine obs_value_missing(obs_set_type, missing, index_in) returns a logical array m
with false for all entries where an observation exists and true if observation is missing. Opt
arguement index_in selects which copy of the missing flags is returned with a default value

9. function read_obs_set(file pointer), reads an obs set from file with this pointer (can just b
index for now)

10. function read_obs_set_time(file pointer), reads the obs_set_time part of an obs_set leav
information about the data and missing flags.

11. subroutine write_obs_set(file, pointer, obs_set), writes an obs_set to file with this pointe

12. subroutine write_obs_set_time(file_pointer, obs_set), writes the obs_set_time part of a
obs_set leaving out information about the data and missing flags.

ALSO INHERITS the calls from obs_set_def which should act directly on the obs_set_def in
obs_def structure.
obs_set_specification.fm April 23, 2002 10:41 am 6

obs_set_specification.fm April 23, 2002 10:41 am 7

een regis-
allows

ot cur-

ould

t
uld be
 point-

d into
ointers

ed to

lud-

the

ected

copy

 as list
sets.

t in
IIB. set_def_list

Provides permanent storage with indexing and retrieval for obs_set_def structures. This is
between the obs_set_def and the obs_sequence. Only obs_set_def structures that have b
tered in the index can be used as subsets or can be referenced in an obs_set. This level also
for the definition of hierarchically nested obs_set_def subsets. The subset mechanism is n
rently implemented.

Defines type set_def_list_type
which contains an ordered list of list_element_types, along with a maximum number of
list_element_types that can be in this list and the current number in the list. The maximum sh
be removed in later implementations by addition of dynamic storage.

Also defines private type list_element_type
which contains an obs_set_def, an integer index, the total number of observations in the se
(including subsets when these are implemented), the maximum number of subsets that co
included in this set and the number of subsets currently included as well as a list of indices
ing to the subsets.

At some point, want to make sure that set_def_list structures are frozen once the list is linke
an obs_sequence structure so that things can’t be redefined underneath. May need back p
and other things when subsets are implemented.

1. function init_set_def_list(max_sets) returns a set_def_list with all required storage allocat
hold up to max_sets.

2. subroutine set_def_list_copy(list_out, list_in) does a complete copy of list_in to list_out inc
ing allocating all required storage.

3. subroutine get_expected_obs(list, list_index, state_obs or extended state, num) returns
expected values of all observations included in the (hierarchical) list_element with index
list_index on the set_def_list list. The optional argument num requests return of only the exp
value of the num-th observation in the referenced list_element.

4. subroutine list_element_copy(list_out, list_in) is a private interface doing comprehensive
of list_element_type list_in to list_out.

5. function add_to_list(list, set, max_subsets_in) returns a set_def_list that that is the same
but with the addition of set which is specified as having no more than max_subsets_in sub
Final argument is optional with default number of subsets being 0.

6. function get_def_from_list(list, index) returns the obs_set_def in the index_th list_elemen
the set_def_list.
obs_set_specification.fm April 23, 2002 10:41 am 8

r
ist list.

riables
ation

es of
 hierar-
rva-

 in the

e-

t.

rame-
7. function get_num_sets_in_list(list) returns the total number of list_elements in this list.

8. subroutine get_diag_obs_err_cov(list, index, cov) returns the diagonal observational erro
covariance for the subset hierarchy with parent that is the index-th element on the set_def_l

9. subroutine get_num_close_states(list, index, radius, num) returns the number of state va
within radius of each observation that is defined in the obs_set_defs that have parent at loc
index on the set_def_list, list. The numbers are returned in num.

10. subroutine get_close_states(list, index, radius, num, indices, distance) returns the indic
all the state variables that are closer than radius to each of the observatoins included in the
chical set_def_list with parent at position index on the list. The distances between the obse
tions and the corresponding state is returned in distance.

11. function get_number_obs_subsetrs(list, index) returns the number of subsets contained
set_def_list elmenet index.

12. subroutine write_set_def_list(file_id, list) outputs the list and all its contents.

13 function read_set_def(file_id) reads the output of write_set_def_list and returns the corr
sponding set_def_list.

14. function write_list_element(file_id, element) outputs the contents of a single list elemen

15 function read_List_element(file_id) reads the output of write_list_element.

III. obs_set_def

Defines a set of associated observation definitions.

Defines type obs_set_def_type

contains
error_covariance
list of obs_defs
the number of obs_defs currently in the set
the maximum number of obs_defs that could be in the set (this is a storage simplification pa
ter that should eventually be eliminated.
obs_set_specification.fm April 23, 2002 10:41 am 9

.

t_out;

vation

ng the

l state
or this
 that
ore
d or
y

or the

f num-
onding

er of

r return

1,
et / obs
ce val-
Note that current implementation only supports diagonal error_covariance.

Earlier requirements for a unique key for assimilation algorithm caching have been dropped

1. function init_obs_set_def(max_num_obs) returns an obs_set_def with space for up to
max_num_obs observation defintions. Might want to make this optional at a later time.

1b. subroutine obs_set_def_copy(set_out, set_in) produces a complete copy of set_in in se
handles all allocaton of storage, etc.

2. subroutine get_diag_obs_err_cov(obs_set_def, cov) : Returns the diagonal of the obser
error covariance matrix for this set in a one dimensional array.

3. function get_obs_err_cov(obs_set_def :: set) : Returns a two dimensional array containi
observational error covariance for this set. Not needed in initial implementation.

4. subroutine get_expected_obs(obs_set_def :: set, model_state_vector or extended mode
vector:: state, obs, num) : Returns a one dimensional array containing the expected values f
observation set given the model state. Argument num is optional and, if specified, indicates
only the expected value of the num observation in the set is to be returned. Need to give m
thought to how the extended state is passed around if it is required and whether it is of fixe
variable composition (probably variable for big models). For initial implementation need onl
implement raw state part.

5. function get_obs_def(obs_set_def, index) returns the index obs_set in the obs_set_def.

6. function get_num_obs(obs_set_def :: set): Returns the number of observations in a set.

Following 3 interfaces push up obs_def functions to this level (inherited)

13. subroutine get_obs_locations(obs_set_def, locations) returns ordered set of locations f
observations in the set.

14. subroutine get_close_states(obs_set_def, radius, number, indices, dist) returns array o
bers plus 2D array of indices for state variables close to each ob in the set and the corresp
distances in the 2D array dist.

15. subroutine get_num_close_states(obs_set_def, radius, number) returns array of numb
close states for each of the observations in the set.

16. subroutine add_obs(obs_set_def, obs_def) adds the obs_def to this obs_set. Need erro
if the maximum number of obs would be exceeded by this insertion.

17. subroutine set_err_cov(obs_set_def, obs_subset_index, obs_subset_index, obs_index
obs_inces2, cov) sets error covariance between two obs subsets/obs. Only two of the subs
indices can be set in the call. The covariance is a two dimensional matrix with the covarian
obs_set_specification.fm April 23, 2002 10:41 am 10

trix is
ted.

bs set
ith

rom a
etc.

dard
ues. Error is required if the indices are outside the range for this set or if the covariance ma
not the correct size for the pair. Not needed in initial implementation. Not currently implemen

19. function diag_obs_err_cov(obs_set_def :: set) : Returns true if error covariance for this o
is diagonal, false otherwise. Initial implementation can support only diagonal covariances w
great simplification.

20. function read_obs_set_def(file_pointer), returns an obs_set_type with contents read in f
standard file format (this may be relatively sophisticated as it will have to allocate storage,
Should make use of calls defined above.

21. subroutine write_obs_set_def(file_pointer, obs_set_def) outputs an obs_set_def in stan
file format.

May need to push up additional obs_def functions to this level
obs_set_specification.fm April 23, 2002 10:41 am 11

associ-

turns

sex-
l with

n defi-

e
ters,
e

thin
of

s a list
ed
rder is
n loca-

 the

t to
IV. obs_def

Defines a single scalar observation’s spatial characteristics and kind.

Defines type obs_def_type

contains a location, an obs_kind, an a real error variance. Other parameters may need to be
ated with the type at some point.

Earlier requirements for a unique key for caching have been eliminated.

1. function init_obs_def(obs_location, obs_kind, error_variance) Constructor for obs_def re
an obs_def with this kind, location and error variance.

2. function get_expected_obs(obs_def, model_state_vector / extended state vector), return
pected value given state or extended state vector. For initial implementation only need to dea
raw state.

3. function get_error_variance(obs_def), returns observational error variance of observatio
nition.

4. function get_obs_location(obs_def), returns a location_type for this observation. For som
more complex types of observations the definition of location may involve additional parame
but let’s avoid that complexity for this stage. This would require changing this to a subroutin
with multiple returned parameters.

5. function get_obs_def_kind(obs_def), returns the kind of this observation.

7. function get_num_close_states(obs_def, radius) retuns the number of state variables wi
radius of this observation. This assumes that the model class data is global (only one type
model in use). At some point it would be nice to generalize this, but not now.

8. subroutine get_close_states(obs_def, radius, number, close_state_list, distance) Return
of state points within distance radius of the obs_def. The number is redundant to the return
value from get_num_close_states. The list has the indices of the close states (currently no o
implied) and distance returns the distance between each state in the list and the observatio
tion.

10. function set_obs_location(obs_def, location) returns an obs_def with the location set to
input and all other aspects as for the input obs_def.

11. function set_error_variance(obs_def, err_var) returns an obs_def with error variance se
err_var.
obs_set_specification.fm April 23, 2002 10:41 am 12

kind.

Will

e file.

e dif-
d dist
pleted.

se of
to be
r

ns a

n-

Need
.

on.
tion.
12. function set_obs_def_kind(obs_def, obs_kind) returns an obs_def with kind set to obs_

13. function read_obs_def(file_pointer) reads an obs_def from standard format off the file.
need error returns if read fails.

14. function write_obs_def(file_pointer, obs_def) writes an obs_def in standard format to th

15. function interactive_obs_def() does text driven interactive generation of an obs_def and
returns this.

V. location

This is the level at which the details of the spatial representation come into play. There will b
ferent location data representations for different spaces (sort of like the one and twod loc an
mods but more general). Currently, a one dimensional space implementation has been com

Defines type location_type

oned implementation contains a single real number in range 0-1

1. function get_dist(loc1, loc2), returns some metric of distance between two locations.

2. function get_location(location_type) returns values of the location in the arguments; inver
set_loc. This has been implemented as a function in the oned version, but probably needs
modified to be a subroutine, given that a single value will not define locations in higher orde
spaces.

3. function set_location(space model specific arguments, for instance, lat, lon, height) retur
location type with these values.

4. subroutine write_location(file_pointer, location_type) writes the location to the file in a sta
dard format.

5. function read_location(file_pointer) reads the location from the file in a standard format.
error return if read fails; this is related to a general need to re-evaluate error returns from IO

6. subroutine interactive_location(location) allows for interactive text driven entry of a locati
Current oned implementation allows option of selecting a uniformly distributed random loca
obs_set_specification.fm April 23, 2002 10:41 am 13

S time
ime
d with
 is

ber)

h the

ken.
odel

rs
-
ation

.

defi-
VI. generalized_time

For early implementations, let’s just assume all times are discrete and use the standard FM
manager package to do this. However, need to keep possibility of a weighted observation t
interval in mind. Need to be able to output and input a time. The FMS time manager is use
the addition of two interfaces for consistent IO in the DART context. The FMS defined type
retained.

Defines type time_type.

Additional interfaces added to FMS:

1. subroutine write_time(file, time) accepts a file identification (currently an integer unit num
and a time and outputs the time in a standard format.

2. function read_time(file) reads the output of write_time and returns a time type loaded wit
corresponding time.

VII. obs_kind

This module is designed to provide general information about the kind of observation being ta
It is not clear that a class like this that tries to define observation type independently of the m
definition will be useful in the long run. This might be a good place to store other paramete
associated with more complicated observation types. For now, the obs_kind is simply imple
mented as an integer index that corresponds to a particular type of observation. All comput
depending on this index is performed in obs_model for now.

Defines type obs_kind_type.

Current implementation has single integer representing observation kind.

1. function get_obs_kind(obs_kind) returns string (integer for now) specifiying the obs_kind

2. function set_obs_kind(string) returns and obs_kind with this string (integer for now) as its
nition.

3. subroutine write_kind(file, kind) outputs a kind to file.
obs_set_specification.fm April 23, 2002 10:41 am 14

 of
how to
e big-
hould
imple-
st case,
se to

_id)

 imple-

terac-
itions.
4. function read_kind(file) reads a kind from a file.

5. subroutine interactive_kind(kind) allows interactive input of kind for user driven set-up of
observation system.

Can this whole level just be dropped for initial implementation?

VIII. obs_model class

This is the level at which classes become model dependent on the observation taking side
things. This class needs to know considerable detail about how the model data is laid out,
interpolate, how to do forward operators for different types of observations, etc. Probably th
gest chunks of code someone will have to write in order to get things going? Maybe there s
be one more layer that just does interpolation and knows about the model? In the ultimate
mentation, the location and the class should be separated as cleanly as possible. In the be
the class would request model field quantities at specific locations and then operate on the
complete the forward observation operator. Clean separation like this may not be practical.

1. function take_obs(model state vector or extended model state vector, location, obs_kind
there may be a variety of different algorithms. Making use of interpolation if needed from
assim_model, this computes the observation given the state and returns the value. Current
mentation is limited to accepting a simple model state vector.

2. subroutine interactive_def(location, obs_kind) returns a location and obs_kind defined in
tively by a user. This can be used for simple text based interfaces to set up observation defin
obs_set_specification.fm April 23, 2002 10:41 am 15

orks.
ns,

, i.e.
s.
ding
trans-

at this
rn from
at can

e that
cular
. The
 they

o need

ns-
s. Ini-

state.

ber
bal
ray of

gnos-
 to be
ound

tion,
IX. assim_model

This is the interface needed to a model by the assimilation algorithms and observation netw
This is model specific and tries to abstract away the model details. Because of F90 limitatio
seems appropriate to think of only being able to work with one model type (class) at a time
one couldn’t work on a separate atmosphere and ocean model at once with these interface
Assim_model is a class for a particular kind of model and the instances are the state (inclu
some indexed time). Initialization and end calls are for the class data (for instance setting up
form stuff for a spectral model). Smart choices about timestepping can be pushed into calls
level. Extended state should not be viewed as part of the class data, but is instead the retu
some functions operating on the state. May want a concept of static extended state (things th
be obtained by operating on the state variables without time integration) and extended stat
requires integration. For initial implementation, assume that model timestep is fixed at a parti
delta_t and that all observations will be specified as falling exactly on one of these timesteps
general timestepping computations can probably be pushed into an auxiliary module since
will be used for all models.

Defines type assim_model_type
time type with associated global base time that defines model time
state vector

Also defines global meta_data associated with the class that describes the state vector. Als
associated location definitions in global storage.

1. function static_init_assim_model() initializes the class data for the model, for instance tra
form data for spherical harmonics. Sets up global definition of model state variable location
tializes information about model size and things like time stepping capabilities.

1a. subroutine init_assim_model(state) allocates storage for and assim_model instance in

2. function init_diag_output(file_name, global_meta_data, copies_of_fields_per_time,
meta_data_per_copy) returns file_id for an output diagnostic file that will output a given num
of copies (say posterior, prior, truth, ensembles, etc) of fields at each time. For now the glo
meta-data is a text string describing the file contents and the meta_data_per_copy is an ar
text strings describing the contents of each copy of data.

2a. function init_diag_input(file_name, global_meta_data, model_size,
copies_of_field_per_time) reads in output of init_diag_output in preparation for reading dia
tic files. Gets global_meta_data, model_size, and copies_of_field_per_time from file. Need
careful with coordination of files and class since there is all this class static data floating ar
that might be inconsistent with the diagnostic file.

2b. subroutine get_diag_input_copy_meta_data(file_id, model_size_out, num_copies, loca
meta_data_per_copy) reads in the location and copy meta_data given the model size and
num_copies previously read by init_diag_input.
obs_set_specification.fm April 23, 2002 10:41 am 16

eful to

odel

ight
eeds

file is
ch out

me in
oor-

ally but

iable).

ata for
 large

st of
want
ably
d on a
d the
3. function get_model_size() returns integer size of model state vector; need to be very car
understand multiple time-level state interactions. Note that this is class data.

4. function get_max_dt()

5. function get_min_dt()

6. function get_other_dt_stuff()

7. function get_last_state_time_before(time)

8. function get_first_state_time_after(time)

9. function get_closest_state_time_to(assim_model, time) given a model state in assim_m
and a time, finds the closest time to which the model state can be advanced to this time.

10. function get_next_state_time(time)

11. function get_prev_state_time(time)

12. subroutine get_initial_condition(x) returns an assim_model_type to start from in x. This m
come from a file or from something else, controlled by model runtime paramerters??? This n
to be given some help through some runtime interface I think. One option is that a ‘restart’
available in some standard place, this is read in and the corresponding state returned (wat
for multi-level timestepping stuff here). Another option is just some basic spin-up state. The
assim_model_type returned has a time associated with it. For now, this time needs to just co
with whatever is read from file or generated and is probably controlled by a runtime input. C
dinating the time between the model and observation set areas should be automated eventu
can be pushed to runtime for now.

13. subroutine get_state_meta_data(index, location, optional kind) returns metadata for the
indexed state variable as a location plus a kind (if the model has more than one kind of var

14. subroutine get_extended_state_meta_data(index, location, optional kind) returns metad
the indexed extended state variable. May need to further refine this for large models with a
number of possible extended state types.

15. subroutine get_close_states(location_type, radius, number, indices, distance) returns li
state indices within radius of the given location and the number of such state variables. May
to make kind an optional input. Need error handling if there is a storage issue. Should prob
implement with a clean extensible list. Note that these are class functions that don’t depen
particular state instantiation. Also returns the distance between the close state variables an
location. At some point, may need additional distance information from kind differences?
obs_set_specification.fm April 23, 2002 10:41 am 17

bles

tate.

static

ify a

nal)
model

the
 com-
ation,

 for
 is it
and
. that is

gu-

nd the
ce of

e

iag-
 is
r calls
16. function get_num_close_states(location_type, radius) returns the number of state varia
within radius distance of this location.

17. function get_model_time(assim_model_type) returns time type that is the time for this s

18. function get_static_extended_state(assim_model_type, optional field specifier) returns
extended state variables computed from model state. Not needed in initial implementation.

19. function get_model_state_vector(assim_model_type, plus additional arguments to spec
portion?)

20. subroutine copy_assim_model(assim_model_type_out, assim_model_type_in) returns
assim_model_type overloaded to =.

21. function advance_state(assim_model_type, target_time, extended state requests optio
returns state and optionally extended state vector advanced in time to the target_time. If the
has flexibility to do so, it will be advanced to exactly target_time. If it has a fixed time_step,
target_time should be within some small tolerance (for floating point stuff) of a time to which
model can go or an error should be returned. The philosophy here is that the requisite time
putations should be done first and then the model should be advanced. For initial implement
assume that model has single dt and that all observations will fall exactly on a dt interval.

22. function interpolate(state vector / extended state vector, location, field_id) returns value
this field interpolated to the location. Need to be very clear here. What is a field_id and how
obtained. What about 2D fields in 3d models, etc. For now, only implement for state vector
add extended state at later date. Field_id needs to be associated with some sort of string i.d
part of the model metadata.

23. subroutine set_model_time(assim_model_type, time_type)

24. subroutine set_model_state_vector(assim_model_type, state_vector, plus additional ar
ments to specify a portion?

5. subroutine write_state_restart(assim_model_type, file_name) writes out the state vector a
time in a form with machine precision so that time integration can be resumed without eviden
interruption.

26. function read_state_restart(file_name) reads a machine precision restart from file_nam
including the time and state vector.

27. subroutine output_diagnostics(file_id, state vector, time, copy_index optional) outputs d
nostic state information for this time for the copy_index copy. If copy_index is not present it
assumed to be 1. For now, the copies at a given time must be called sequentially and no othe
for output for this file_id may be made until all copies are output at this time.
obs_set_specification.fm April 23, 2002 10:41 am 18

 diag-
28. subroutine input_diagnostics(file_id, state, copy_index) reads in an assim_model_type
nostics from file written by output_diagnostics.

28. subroutine end_assim_model() shuts down and cleans up class data for model.
obs_set_specification.fm April 23, 2002 10:41 am 19

These
).
 (prior
model
ht also
 avail-
head
vide

serva-
c., if
 very
tadata
e ini-
lotted
ill be
ever,

 and

e
denti-
ata.

al
es.
g the
be in
 data. In
space
ts
t this is
d plot-

g
ribing
some

 obser-
rgeted
2. Contents of diagnostic output and control input files:

I. State space output files: Contain metadata and data for output of state space quantities.
are arranged into a (set of) file(s) with different associated time axes (in the NetCDF sense
Things that may be here include the ensemble members before and after each observation
and posterior), and the ensemble mean. Might also want extended state to be available from
which would have to output the appropriate extended state and its associated metadata. Mig
want variance of prior and posterior state (more consistent with non-ensemble methods). If
able, the truth for state variables should be in a file of this format (but would be generated a
of time) if output is for a synthetic run. In all cases, the assim_model level is required to pro
calls that output metadata for the appropriate output variables to a file.

II. Observation space output files: Contain prior and posterior (ensemble) values for the ob
tions, truth for the observation would also be in a file like this. Could also include variance, et
desired. These variables are apt to be irregularly spaced in space and time with potentially
complex metadata. While it is desirable in the long run to attempt to use some standard me
format to express this, doing this correctly appears to be a difficult research problem. For th
tial implementation, it is acceptable to use a customized ascii based format which can be p
for some subset of metadata types by standard matlab based interfaces. For efficiency, it w
necessary to compact this ascii metadata at the head of the output file as per NetCDF. How
for ease of initial implementation may want to generate two output files, one with metadata
one with data and combine them after execution is completed.

There is significant overlap between the observation definition/observation input files and th
observation space diagnostic output files. For the initial implementation, these should use i
cal basic metadata although the diagnostic output may contain additional instances of the d

III. Assimilation space output files: Measures of global error, detailed time series of individu
assimilation variables (do this for efficiency?), covariance output between state/obs variabl
This output is generated directly by the assimilation level which is responsible for generatin
appropriate metadata. However, in many simple cases, the majority of this output may in fact
model space and the model interfaces could be used to generate metadata and output the
more general cases, this metadata may be even more messy than that for the observation
files since it will combine observation and model space output along with statistical produc
between these spaces. Again, it would be desirable to use a standard metadata format, bu
probably impossible at present and a custom metadata format with associated extraction an
ting will be required.

IV. Observation definition/observation input files: These contain efficient metadata describin
observations and sets of observations as well as data (time plus observation value(s)) desc
the associated observations. Eventually, want to be able to stream real observation sets from
community standard data servers through this interface. Also need a capability to generate
vation sets on the fly (i.e. need random access files with read and write pointers) so that ta
obs_set_specification.fm April 23, 2002 10:41 am 20

simi-

ehav-
ded
will
tan-

opri-

riment
eteriza-
ontrol
latively

Ini-
s of

tions

ted in

d time

 at

:

observation types of OSSEs can be performed without modifying the configuration of an as
lation.

V. Parameter control input files: A number of different files are needed to control run-time b
ior of different components of the assimilation system. Traditionally, this type of input has ten
to be done through F90 namelists but this has proved to be somewhat limited. For now, DART
allow the use of either namelists or more general control input files to be read at run-time. S
dard naming convention for input control files will be the module name followed by an appr
ate extension.

3. Different views of DART for different users:

I. Diagnostics users (general diagnostics interfaces)

Want to be able to select the output files associated with a particular experiment. The expe
was generated by a particular model, set of observations, assimilation method, and param
tions associated with the model and the assimilation method. These different aspects will c
to some extent how the diagnostics appear, although diagnostics in most cases should be re
independent of this.

Some example diagnostics that one might like to have readily accessible by a simple GUI.
tially, many of these will be front-end wrappers for Matlab diagnostic routines. Some example
diagnostics that would be nice to have standardized:

a. Plots of overall RMS, spread, etc. as function of assimilation time
b. Plots of ensemble behavior for individual variables
c. Order statistic histograms for selected variables, for both truth or observations, if observa

need to correct for error
d. A catalog of which variables are available and a way to relate them to what they represen

the model
e. Plots or animations of model state (or slabs / hyperslabs of model state) as function of lea
f. Plots of error as above
g. Plots of spread as above
h. Plots of mean bias as above
i. Plots of individual ensemble members as above
j. Plots of error for individual members as above
k. Diagnostic plot of where the observations are
l. For non-perfect cases can’t do all of the quantities above, may often be limited to working

observation locations which may not be regularly gridded
m. Mean value of innovations, time series of innovations, etc.
n. Plots of prior and/or posterior correlations of variables

In order to do this in the most general form, the output file must contain the following items
obs_set_specification.fm April 23, 2002 10:41 am 21

Plots

tions

ted in

d time

 at

tions

ted in

d time

 at

enta-

his)

1. Values of observations, along with description of location and error, plus possibly h’s?a.
of overall RMS, spread, etc. as function of assimilation time
b. Plots of ensemble behavior for individual variables
c. Order statistic histograms for selected variables, for both truth or observations, if observa
need to correct for error
d. A catalog of which variables are available and a way to relate them to what they represen
the model
e. Plots or animations of model state (or slabs / hyperslabs of model state) as function of lea
f. Plots of error as above
g. Plots of spread as above
h. Plots of mean bias as above
i. Plots of individual ensemble members as above
j. Plots of error for individual members as above
k. Diagnostic plot of where the observations are
l. For non-perfect cases can’t do all of the quantities above, may often be limited to working
observation locations which may not be regularly gridded
m. Mean value of innovations, time series of innovations, etc.
n. Plots of prior and/or posterior correlations of variables
a. Plots of overall RMS, spread, etc. as function of assimilation time
b. Plots of ensemble behavior for individual variables
c. Order statistic histograms for selected variables, for both truth or observations, if observa
need to correct for error
d. A catalog of which variables are available and a way to relate them to what they represen
the model
e. Plots or animations of model state (or slabs / hyperslabs of model state) as function of lea
f. Plots of error as above
g. Plots of spread as above
h. Plots of mean bias as above
i. Plots of individual ensemble members as above
j. Plots of error for individual members as above
k. Diagnostic plot of where the observations are
l. For non-perfect cases can’t do all of the quantities above, may often be limited to working
observation locations which may not be regularly gridded
m. Mean value of innovations, time series of innovations, etc.
n. Plots of prior and/or posterior correlations of variables

In order to do this, output files must contain the following:
1. Values of observations, along with description of location and error, plus possibly repres

tion of forward operators
2. Prior ensembles for observations
3. Model state variables, ensemble members and mean
4. Model state variables before and after each assimilation time (can get innovations from t
5. Truth state variables along with the ensemble if this is a simulated observations case.
__

II. University type educational user (student):
obs_set_specification.fm April 23, 2002 10:41 am 22

their
ries:
e run

h this

rva-

lotting
n type
aive

his may
ated

tions
icular

lt is a
files
me

.

This type of user wants to do new runs with existing models (or modified models) and design
own observation set or use previously defined observation sets. Divide this into two catego
Making a run with existing observational set and model but changing some parameters of th
like model or assim parameters and generating output

OR, designing a particular observational set and running either synthetic obs or real obs wit
configuration

Will need tools to build observation sets, in particular to build sets of relatively regular obse
tions or small number of irregularly spaced.
__

III. Sophisticated model developer: Put in a new model and some associated metadata and p
routines etc. Will need to write the assim_model class, the obs_model class, and the locatio
if the domain is something new. While this should be much more straightforward than in a n
modeling setup, this is not going to be trivial and will require lots of expertise on DART.
__

4. Sophisticated assim person: Put in a new assimilation scheme.
__

5. Sophisticated data set person, put in a new data set for use with one or more models. T
be relatively straightforward if the forward operator is simple, but could be extremely complic
in the case of the most general forward operators.

Some notes on DART usage in prototype:

Given a model, etc.

1. Observation definitions, observations set definitions, result is a file containing an observa
definition set (set_def_list); can end up with an array of set_def_lists associated with a part
spatial dicretization (and model because of obs_kind?)

2. Observation sequence definitions: define a sequence of observations through time, resu
file containing an observation sequence (obs_sequence): have an array of obs_sequence
available for a particular spatial discretization (and model?). These may or may not have so
sort of observation values associated with them, but for this purpose those are not relevant
obs_set_specification.fm April 23, 2002 10:41 am 23

which
iables
ed onto

 associ-
t has the
er
ted.

anal-
ays
le to
avail-
 told
, the
3. Perfect model output files: given an observation sequence definition (with no obs values
required) one can run the model (given some initial state). Have output to a state file which
receives the true values of the (extended) state. Also have output to an obs_sequence file
includes not only the same definition, but also adds in the true value of the observation var
and the synthetically generated observations that have samples of the observation error add
the true observation variables.

4. Assimilation experiments: take as input an obs_sequence with at least one copy of data
ated to act as observations. Outputs are assim, state and obs output files. The state outpu
values of the state ensemble members both prior and posterior. The obs outputs are anoth
obs_sequence file, this time with the prior and posterior values for the observations associa
The assim output files can be postponed for development for now.

5. Doing analysis: Analysis is done by taking input from a set of files. For observation space
ysis, input files might include one that has the perfect obs (if available), the actual obs (alw
available) and for a filter a file with the prior and posterior obs. In the long run want to be ab
sub-sample so that files don’t get huge, but that’s an add-on. For state, might have truth (if
able), plus a second file with prior and posterior ensembles. Analysis programs need to be
what file name (and what copy or metadata tag within the file) are associated with the truth
obs (for obs files), and the ensembles. They can then provide an array of plotting options.
obs_set_specification.fm April 23, 2002 10:41 am 24

