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e Participants
e Non Gaussian filters

e Multiresolution models

e Tapering covariance functions




Overview

The Geophysical Statistics Project is a statistical research group
embedded within NCAR. It is supported mainly by NSF Division of
Mathematical Sciences.

The Initiative motivates fundamental statistical problems that un-
derlie DA and provides a context for new statistical research.

DART also gives statisticians, who have little or no graduate train-
ing in geophysical computing, access to large numerical models and
nontrivial test cases.



Activities Past and Future

Statistics post docs
Thomas Bengtsson (NonGaussian filters)

Reinhard Furrer (Covariance Tapering)
Tomoko Matsuo (Wavelet covariances, Mesosphere DA) 50% DAI

Undergraduates tn math
Sponsored a student team at the Institute for Pure and Applied
Mathematics, UCLA 6/04-8/04.

DA focus with NSF Mathematics Centers 1/05-5/05

%NCONISS i
(Includes the NCAR/DAI Summer school)



NonGaussian filters

Is 1t possible to improve assimilation by accounting for non-
Gaussian distributions?



NonGaussian filters

Is 1t possible to improve assimilation by accounting for non-
Gaussian distributions?

14

12

10

Components 1,2,8 from
. “ an ensemble Kalman
Filter for “Lorenz 40”.

lo m + @ m

4] 5 10 a a1 02 [ ] 0.4

Clear departures from a multivariate normal.



This is not a straight line world!
Focus on (X1, X2) ensemble members
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Mixtures of Normals

density




Mixture Filters
Ensemble Kalman Filter can be extended in an efficient way from
a Gaussian to mixtures of Gaussians.

Bastic ingredients for a hybrid local filter.

e Sequentially assimilate observations.

e Apply mixture filter to a low dimensional set of state components
“close” to the observations.

e Update other components of the state vector using the Gaussian
EKF but conditional on the close updates.
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Ensemble Kalman Filter can be extended in an efficient way from
a Gaussian to mixtures of Gaussians.

Bastic ingredients for a hybrid local filter.

e Sequentially assimilate observations.

e Apply mixture filter to a low dimensional set of state components
“close” to the observations.

e Update other components of the state vector using the Gaussian

EKF but conditional on the close updates.

Performance (in Lorenz 1996) improves over usual EnKF.
Multi-modal ensemble forecasts can be preserved in the update.



Multiresolution and nonstationary spatial covariances

Problem:

Traditional methods of representing spatial covariances break down
for nonstationary fields.

Also, traditional models are computationally infeasible applied to
large numbers of locations.

Goal:

Use wavelet based representations to capture both nonstationary
structure and to facilitate computing.



Creating a random function or field.

A (wavelet) Basis
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Why wavelets?

Reduction in complexity
Many random functions and fields may be succinctly described by
just a few correlations among the coefficients.

Local support:
Wavelets can represent nonstationary covariances easily.

Another good thing:
If the covariances among the {a;} are sparse, this leads to efficient
numerical algorithms. e.g. generating ensembles, updating



BAU: a naive correlation matrix.
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Assuming the coefficients are uncorrelated. Strange!

The goal is to craft wavelet models to reproduce reasonable
coVariances.



Some Results

The key 1s to add some off diagonal correlations among the
wavelet coefficients ... but not too many!

e It is possible to approximate a wide range of 2-d isotropic covari-
ance models using wavelets. The number of nonzero covariance
elements appears to scale linear in grid size.

e The EM algorithm for “missing” data can be adapted to handle
estimating covariances for irregularly spaced locations.



Covariance Tapering

Tapering a covariance matrix, (2), introduces zeroes by multiplying
the covariance elements directly by a tapering function (7).
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Results:

Judicious tapering does not greatly compromise the “optimal”
properties of the Kalman Filter or Optimal Interpolation.

This is confirmed numerically with simulations and also based on
asymptotic theory for spatial processes.
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Updates wusing nearest
neighbors can be as effec-
tive as the entire set of
observations.
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Future Work

The extensions will provide new DA methods that can be tested in
the DART framework.

e Implement the nonGaussian filter in DART.

e Apply the wavelet covariance models to archived NCEP forecasts
to estimate the background covariance.

e Determine the best way to taper a sample covariance matrix
that is nonstationary.



