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Outline

DAl in my world

Why ensemble approaches?
Data assimilation in the PBL
Research with a column model
DART and assimilation in the PBL

Summary and future DAI interaction
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DAl and me
-

# No formal relationship
# Collaborative opportunity

# Collection of expertise
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Predictability L essons
B -

#® The forecast problem, particularly at small scales, is
iInherently probabilistic.

# We are obligated to include estimates of uncertainty in
observations, analyses, and forecasts and how they
relate to the “flow of the day.”

# The only way we know how to do this is to combine
ensemble forecasts with a data assimilation system,
using our best dynamic models.
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PBL characteristics and asssmilation

-

# Transient strong coupling with the Earth’s surface and
the free atmosphere.

# Unknown and highly variable (space and time) error
growth that is probably not well represented Iin
mesoscale models.

°

Irreversible processes.

# Nonhydrostatic processes and lack of dependable
“balances.”
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-

Column model experiments

-

Hacker/Snyder

Variance-covariance structures in a current mesoscale
model.

An off-line 1-D PBL modeling framework.

Application of the EnKF to fixed surface (screen-height)
observations.

Conclusions and future work.
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WRF Climatology

o -

Summer southern great plains correlation with near-surface
state.

Correlation with2-m T Correlation with 10-m U
4000

4000

3000 3000

1000 1000

Forecast Hour Forecast Hour

o |

Data Assimilation Initiative review, Sept 2004 — p.8/17



Assimilation Example: Nighttime
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Assimilation Example: Daytime
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Average Error Reduction for Assimilation

-

Error reduction in T (K) Error reduction in U (ms™)
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-

Can the ensemble quantify skill?

#® Compare spread and error at z =500 m

Spread/Error Ratio
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-

® Augment the state vector with the “moisture availability”

Spread and Error

Add Model Error and Estimate M
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-

M and allow the observations to modify the distribution.
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Summary of results

o N

#® The state near the surface is strongly coupled to the
PBL through most of the diurnal cycle.

#® The covariances can be exploited to determine the
structure of the PBL with surface observations.

# Model error can be mitigated by augmenting the state
vector with model parameters, and estimating their
distributions.
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°

Future column-model plans

-

Install more sophisticated column model into DART.

Investigate forward operator error and more parameter
estimates.

Attempt real-data experiments for augmenting profiler
networks.
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DART and PBL assimilation research

-

°

°

Toward 3D B

Multiple ways to localize ensemble covariances.

Ease of adding state variables or parameters to the
state vector.

Ease of adding new observation types.
Natural transition to real-data assimilation experiments.
The ability to use both GCMs and mesoscale models.
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Primary challengeto DA
-

General: data assimilation issues
1. Strongly-forced, highly dissipative
2. Inappropriate closure assumptions (model error)
3. Extremely variable representativeness error

WRF: implementation issues
1. Boundary conditions
2. Cold-start initialization

.

Data Assimilation Initiative
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