Initializing carbon cycle predictions from CLM by assimilating biomass and LAI observations

Andrew Fox^{1,2}, Tim Hoar², William Kolby-Smith¹, Jeffrey Anderson² & David Moore¹

- 1. University of Arizona
- 2. National Center for Atmospheric Research

Office of This work is funded by DOE Regional and Science Global Climate Modeling DE-SC0016011

Forecasting the Carbon Cycle?

• Forecasting

- Near-term, iterative, initialized prediction

- Potentially very useful because:
 - Can be verified

Provides information for decision support

Sources of uncertainty (& their cure)

 Model Structure DEVELOPMENT

Model Parameters MCMC OPTIMIZATION

- Initial Conditions
 Spin Up
 Climate forcing

. STATE DATA ASSIMILATION

Sources of uncertainty (& their cure)

Model Structure DEVELOPMENT

Model Parameters PARAMETERIZATION

- Initial Conditions
- Spin Up
- Climate forcing

STATE DATA ASSIMILATION

Community Land Model set up

- Multi-instance CLM4.5 BGC set up for a location in central New Mexico, USA
- PFT fractions of Bare, C4 grass, shrub and Needleleaf Evergreen Temperate
- Spun up by cycling 12 years of ensemble atmospheric reanalysis data

LAI and Biomass – single instance

LAI and Biomass – multi-instance

Uniform Climate Forcing v. Initial Conditions

Uniform Climate Forcing v. Initial Conditions

LAI – Error is reduced for 2.5 years

Biomass – Error is reduced for 5+ years

LAI and Biomass – observations of the "truth"

Impact of assimilating LAI, Biomass and both

Impact of assimilating LAI, Biomass and both

Impact on Forecast

LAI and Biomass – "real" observations

0.5° Aggregated MODIS LAI Observations

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112, G01023, doi:10.1029/2006JG000168, 2007

Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0)

Peter J. Lawrence¹ and Thomas N. Chase¹

Received 27 January 2006; revised 3 October 2006; accepted 14 November 2006; published 17 March 2007.

0.25° Vegetation Optical Depth Biomass Observations

Recent reversal in loss of global terrestrial biomass

Yi Y. Liu^{1,2*}, Albert I. J. M. van Dijk^{3,4}, Richard A. M. de Jeu⁵, Josep G. Canadell⁶, Matthew F. McCabe⁷, Jason P. Evans¹ and Guojie Wang⁸

LAI and Biomass – "real" observations

Adaptive inflation compensates for model error

RSITY

THE UNIVERSITY

LAI assimilation on 12/01/2005 Post Ens ····· **Post Mean** Observation **Prior Mean Prior Ens** +++++++ + 4 Prior Obs **Probability** Post 1 0 0.6 0.4 1.0 0.2 0.8 1.2 LAI $(m^2 m^{-2})$

Model state correlations with observations

Observed and unobserved states

Assimilating LAI requires adaptive inflation

Assimilating LAI requires adaptive inflation

Assimilating Biomass using adaptive inflation

Assimilating Biomass using adaptive inflation

Unobserved State variables

Carbon fluxes

Long-term Forecasts

Long-term Forecasts

Long-term Forecasts

Reductions in RMSE during assimilation

		LAI (m ² m ⁻²)				
		Free	No Inf.	Inflation	Forecast	
RMSE	2001-2010	0.93	0.70	0.44	-	
	2006-2010	0.96	0.69	0.39	0.33	
		Biomass (gC m ⁻²)				
		Free	No Inf.	Inflation	Forecast	
RMSE	2001-2010	1376.2	1049.9	417.7	-	
	2006-2010	1406.3	940.29	62.8	51.4	

Reductions in RMSE during forecast

		LAI (m ² m ⁻²)				
		Free	No Inf.	Inflation	Forecast	
RMSE	2001-2010	0.93	0.70	0.44	_	
	2006-2010	0.96	0.69	0.39	0.33	
		Biomass (gC m ⁻²)				
		Free	No Inf.	Inflation	Forecast	
RMSE	2001-2010	1376.2	1049.9	417.7	-	
	2006-2010	1406.3	940.29	62.8	51.4	

Key Points

- 1) Forecasts benefit from accurate initial conditions
- 2) Impact persists from years to decades for different C pools
- 3) Spun-up model had too high biomass, and inaccurate seasonal cycle in LAI
- 4) Large reductions in error during assimilation and forecast periods
- 5) Adaptive inflation is required to account for large model error
- 6) Impact on C fluxes is immediate

Office of This work is funded by DOE Regional and Science Global Climate Modeling DE-SC0016011

Georgia O'Keeffe - "Black Mesa Landscape"

Data Assimilation Research Testbed (DART)

A Forecasting Challenge

- Deterministic knowledge of complex processes and feedbacks = complex models
- Present day stocks and fluxes are very dependent on disturbance history
- Actually disturbance history is "unknowable" replace this by updating states based on observations
- Ensemble data assimilation can account for uncertainties in model and observations
- Provides probabilistic estimates of future states

AND THEN WHAT?

IAV from Semi-arid Ecosystems?

LETTER

doi:10.1038/nature13376

Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle

Benjamin Poulter^{1,2}, David Frank^{3,4}, Philippe Ciais², Ranga B. Myneni⁵, Niels Andela⁶, Jian Bi⁵, Gregoire Broquet², Josep G. Canadell⁷, Frederic Chevallier², Yi Y. Liu⁸, Steven W. Running⁹, Stephen Sitch¹⁰ & Guido R. van der Werf⁶

CARBON CYCLE

The dominant role of semi-arid ecosystems in the trend and variability of the land CO₂ sink

Anders Ahlström,^{1,2,x} Michael R. Raupach,³⁺ Guy Schurgers,⁴ Benjamin Smith,¹ Almut Arneth,⁵ Martin Jung,⁶ Markus Reichstein,⁶ Josep G. Canadell,⁷ Pierre Friedlingstein,⁸ Atul K. Jain,⁹ Etsushi Kato,¹⁰ Benjamin Poulter,¹¹ Stephen Sitch,¹² Benjamin D. Stocker,^{13,14} Nicolas Viovy,¹⁵ Ying Ping Wang,¹⁶ Andy Wiltshire,¹⁷ Sönke Zaehle,⁶ Ning Zeng¹⁸

LETTER

doi:10.1038/nature20780

Compensatory water effects link yearly global land CO₂ sink changes to temperature

Martin Jung¹, Markus Reichstein^{1,2}, Christopher R. Schwalm³, Chris Huntingford⁴, Stephen Sitch⁵, Anders Ahlström^{6,7}, Almut Arneth⁸, Gustau Camps-Valls⁹, Philippe Ciais¹⁰, Pierre Friedlingstein¹¹, Fabian Gans¹, Kazuhito Ichii^{12,13}, Atul K. Jain¹⁴, Etsushi Kato¹⁵, Dario Papale¹⁶, Ben Poulter¹⁷, Botond Raduly^{16,18}, Christian Rödenbeck¹⁹, Gianluca Tramontana¹⁶, Nicolas Viovy¹⁰, Ying-Ping Wang²⁰, Ulrich Weber¹, Sönke Zaehle^{1,2} & Ning Zeng^{21,22}

Sources of Uncertainty

- Model Structure
- Model Parameter
- Initial Conditions/Model States
- Spin Up
- Boundary Conditions

Vegetation Optical Depth and SIF

Courtesy Bill Kolby-Smith, UA

Global Biomass OSSE

Ensemble Data Products Production and Validation

Community Land Model set up

- Multi-instance CLM4.5 BGC set up for a location in central New Mexico, USA
- PFT fractions of Bare, C4 grass, shrub and Needleleaf Evergreen Temperate
- Spun up by cycling 12 years of ensemble atmospheric reanalysis data

