Why should Community Land Model users care about DART?

Andy Fox^{1,2}, Tim Hoar², Marcy Litvak³, Jeff Anderson² & David Moore¹

- 1. University of Arizona
- 2. National Center for Atmospheric Research
- 3. University of New Mexico

Pata Assimilation esearch estbed

IMAGe: Data Assimilation Research Section

Fate of anthropogenic CO₂ emissions

Uncertainty in Coupled Climate-Carbon Models

VOLUME 19

JOURNAL OF CLIMATE

15 JULY 2006

2006

Climate-Carbon Cycle Feedback Analysis: Results from the C⁴MIP Model Intercomparison

P. FRIEDLINGSTEIN,^a P. COX,^b R. BETTS,^c L. BOPP,^a W. VON BLOH,^d V. BROVKIN,^d P. CADULE,^e S. DONEY,^f M. EBY,^g I. FUNG,^h G. BALA,ⁱ J. JOHN,^h C. JONES,^c F. JOOS,^j T. KATO,^k M. KAWAMIYA,^k W. KNORR,¹ K. LINDSAY,^m H. D. MATTHEWS,^{g,n} T. RADDATZ,^o P. RAYNER,^a C. REICK,^o E. ROECKNER,^p K.-G. SCHNITZLER,^p R. SCHNUR,^p K. STRASSMANN,^j A. J. WEAVER,^g C. YOSHIKAWA,^k AND N. ZENG^q

Year

Uncertainty in Coupled Climate-Carbon Models

VOLUME 19

JOURNAL OF CLIMATE

Climate-Carbon Cycle Feedback Analysis: Results from the C⁴MIP

Model Intercomparison

P. FRIEDLINGSTEIN,^a P. COX,^b R. BETTS,^c L. BOPP,^a W. VON BLOH,^d V. BROVKIN,^d P. CADULE,^e

2006

15 JULY 2006

FRIEDLINGSTEIN ET AL.

15 JANUARY 2014

2014

511

I. OF ARIZONA

Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks

PIERRE FRIEDLINGSTEIN,* MALTE MEINSHAUSEN,⁺ VIVEK K. ARORA,[#] CHRIS D. JONES,[@] ALESSANDRO ANAV.* SPENCER K. LIDDICOAT.[@] AND RETO KNUTTI[&]

Sources of Uncertainty

- Model Structure
- Model Parameter
- Initial Conditions/Model States
- Spin Up
- Boundary Conditions

Sources of Uncertainty

- Model Structure
- Model Parameter
- Initial Conditions/Model States
- Spin Up
- Boundary Conditions

CAN DATA ASSIMILATION HELP?

Is DA different for NWP and CC models?

	Data Assimilation in NWP	Data Assimilation in CLM
Main objective	Forecast improvement	Process understanding Regional quantification Forecast improvement
Dynamics	Physics – essentially well known from first principles	Physical, biological, chemical – Only partially known, empirical relationships, optimized parameters
Spatial representation	Smoothly varying, continuous fields	Sub-grid heterogeneity with discrete boundaries, no lateral flow
Observations	High spatial and temporal density	Very different spatial and temporal characteristics
Mathematical problem	Optimization of initial conditions	Initial value problem (e.g. pools) Boundary conditions (e.g. fluxes) Parameter optimization

THE MODEL

The evolution of Earth System Models

The Community Land Model

DATA ASSIMILATION RESEARCH TESTBED

Data Assimilation Research Testbed (DART)

- DART is a community facility for ensemble DA
- Uses a variety of flavors of filters
 - Ensemble Adjustment
 Kalman Filter
- Many enhancements to basic filtering algorithms
 - Adaptive inflation
 - Localization
- Uses new multi-instance capability within CESM

DART-CLM

Observations we can use with CLM-DART

- Leaf area index
- Above ground biomass
- Canopy nitrogen
- Snow cover fraction
- Microwave brightness temperature
- Cosmic ray neutron intensities
- Total water storage anomalies (GRACE)
- Soil moisture and temperature
- Latent heat flux
- Sensible heat flux
- Carbon fluxes (NEP, GPP, ER, SR)

DEMONSTRATE IT WORKS

New Mexico Elevation Gradient (NMEG)

Site level assimilation of MODIS LAI

Site level assimilation of Biomass

Impact of assimilation on CO₂ flux

NEW OBSERVATIONS

New Remote Sensing Observations

GEDILIDAR GLOBAL ECOSYSTEM DYNAMICS INVESTIGATION

ECOSTRESS

Studying Plant Water Use and Stress

Vegetation Optical Depth and SIF

Courtesy Bill Kolby-Smith, UA

Global Biomass OSSE

You can take the boy out of Data Products...

Ensemble Data Products Production and Validation

The _actual_ work in process

- Finish GMD paper that documents details of implementation, flux tower observations and global OSSE
- Compare global carbon balance calculated from CLM satellite phenology, CLM – Biogeochemistry and CLM-BGC with DART and satellite leaf area observations
- 3. A NASA Terrestrial Hydrology proposal to use GRACE, SMAP, and ECOSTRESS observations
- 4. Switch to using CLM5
- 5. Parameter estimation in CLM with DART how and which parameters?
- 6. Make CLM-DART a useful, popular, routine and effective tool for the CLM user community

