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|. Overview and some methods
Big problems require clever simplification

ll. Challenges
A. Model bias
B. Balances and attractors
C. Assimilation and discrete distributions

I1l. Opportunities
Field is maturing; theory and methods that are easy to apply
Software engineering advances make it easier to get started
Efforts like Data Assimilation Research Testbed (DART) underway



The Data Assimilation Problem

Given: 1. A physical system (atmosphere, ocean...)

2. Observations of the physical system

Usually sparse and irregular in time and space
Instruments have error of which we have a (poor) estimate
Observations may be of ‘non-state’ quantities

Many observations may have very low information content

3. A model of the physical system

Usually thought of as approximating time evolution

Could also be just a model of balance (attractor) relations
Truncated representation of ‘continuous’ physical system
Often quasi-regular discretization in space and/or time
Generally characterized by ‘large’ systematic errors

May be ergodic with some sort of ‘attractor’



We want to increase our information about all three pieces:

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’
Initial conditions for forecasts
High quality analyses (re-analyses)

2. Get better estimates of observing system error characteristics

Estimate value of existing observations
Design observing systems that provide increased information

3. Improve model of physical system

Evaluate model systematic errors
Select appropriate values for model parameters
Evaluate relative characteristics of different models



Examples:

1. Numerical V@ather Prediction

Model: Global troposphere / stratosphere O(1 degree by 50 levels)
Observations: radiosondes twice daily, surface observations, satellite winds, aircraft
reports, satellite radiances, etc.

2. Tropical Upper Ocean State Estimation (ENSQO prediction)

Model: Global (or Pacific Basin) Ocean O(1 degree by 50 levels)
Observations: Surface winds (possibly from atmospheric assimilation), TAO buoys,
XBTs, satellite sea surface altimetry

3. Mesoscale simulation and prediction

Model: Regional mesoscale model (WRF), O(1km resolution)
Observations: Radial velocity from Doppler radar returns

4. Global Carbon Sources and Sinks




Nonlinear Filtering (A Bayesian Perspeel)

Dynamical system governed by (stochastic) DE:
dx[ = f(xt, t) + G(xt, t)dBt, t>0
Observations at discrete times:
yk:h(xk,tk)+vk; k=12 ...; e+ 1> W2t
Observational error is white in time and Gaussian (nice, not essential)
Vi - N(O, Rk)
Complete history of observations is:
Yo ={y; =1t
Goal: Find probability distrilstion for state at time t:

pP(X, ] Yt)

(1)

(2)

(3)

(4)

(5)



Nonlinear Filtering (cont.)

State between observation times obtained from DE

Need to update state given new observation:
O _ []
PEK %[ Yt 0 PEK WYie Y, _ 0 (6)

Apply Bayes' rule:

p%’k\xk’ Ytk_lgp%‘ tk\Ytk_lg
L Y, 0= — @
p%&\tk_lm

Noise is white in time (3) so:

PEVk| Xk Y 1% = POy X (8)

Also have:

p%’k‘Ytk_lg = [ Py )P tk\Ytk_l%*X (9)



Nonlinear Filtering (cont.)

Probability after new observation:
) . P(Y )P tk‘Ytk_lg
P tk‘Yt o= (10)
k fp(yk\é)p%tk\Ytk_l%E

Observational Error
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Prior State Estimate,
from Model

——

_/\Posterior (normalized
product)




General methods for solving the filter equations arevkno

1. Advancing state estimate in time

2. Taking product of two distributions

But, these methods afar too &pensve for problems of interest

1. Huge model state spaces (10 is big!), NWP models at O(10 million)

2. Need truncated representations of probabilistic state to avoid exponential solution time
and storage



The ARI of Data Assimilation:

Find heuristic simplifications that make approximate solution affordable
1. Localization (spatial or other truncated basis)

2. Linearization of models, represent time evolution as linear
(around a control non-linear trajectory)

3. Represent distributions as Gaussian (or sum of Gaussians)
4. Monte Carlo methods
5. Application of simple balance relations

6. Many others...



Kalman Filter

Simplifications:

1. Linearization of model around non-linear control trajectory

2. Error distributions assumed Gaussian

Fundamental Problem:

Still too expensve for lage models

Advancing covariance in linearized model is at least:

O(model_size * model_size)



Observations
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Reduced Space Kalman Filters:

Additional simplification:

Assume that covariance projects only on small subspace of model state

Evolving covariance in linearized model projected on subspace may be cheap

Subspace selection:

1. Dynamical: use simplified model based on some sort of scaling

2. Statistical: use long record of model (or physical system) to find reduced basis in
which most variance occurs (EOF most common to date)

Problems:
1. Dynamics constrained to subspace may provide inaccurate covariance evolution
2. Observations may not ‘project strongly’ on subspace

3. Errors orthogonal to subspace unconstrained, model bias in these directions can
quickly prove fatal



Ensemble Kalman Filters:

Simplifications:

1. Monte Carlo approximation to probability distributions

2. Localization in space, avoids degeneracy from samples smaller than state space
and reduces sampling noise

3. Gaussian representation of probability distributions generally used for computing
update

Problems:
1. Selecting initial samples for ensembles (Monte Carlo samples)
2. Determining degree of spatial localization; sampling error

3. Maintaining appropriate model ‘balances’ in ensemble members

BUT, UNPRECEDENTED EASE OF INITIAL APPLICAON




How an Ensemble Filter Wks

1. Use model to advance (3 members here) to time
at which next observation becomes available

Ensemble state Ensemble state at time
estimate after using of next observation
previous observation ( )

(analysig

*

*

*



How an Ensemble Filter Wks

2. Get prior ensemble sample of observation, y=H(x), by
applying forward operator H to each ensemble member

y ﬂl’heory: observations
from instruments with
uncorrelated errors can
be done sequentially.

» H H N J
*
*

>*



How an Ensemble Filter Wks

3. Getobserved valuandobservational error distribution
from observing system




How an Ensemble Filter Wks

4. Findincrementfor each prior observation ensemble
(this is a scalar problem for uncorrelated observation errors)

H H Note: Difference between
different flavors of ensemble
filters is primarily in
observation increment

\Computation y

¥ *

>*



How an Ensemble Filter Wks

5. Use ensemble samples of y and each state variable to linearly
regress observation increments onto state variable increments

ﬂl‘heory: Impact of A
observation increments gn
each state variable can he

handled sequentially!
-

* *

>*




How an Ensemble Filter Wks

6. When all ensemble members for each state variable are updated,
have a new analysis. Integrate to time of next observation...

*

* o o



Details of Step 4: Finding Increments for Observation Variable Ensemble, y
Scalar Problem: Wide variety of options available and affordable. Examples:
1. Perturbed Observation Ensemble Kalman Filter (EnKF); stochastic

2. Ensemble Adjustment Kalman Filter (EAKF); deterministic

Key to Kalman Filters: Product of Gaussians is Gaussian

Observation § with observational error variané&

1--1
Posterior Variance is 5= { + 30 } (11)

and mean is: y = Z”{ + yO/ZO} (12)



Details of Step 4. Perturbed Observation Ensemble Kalman Filter (EnKF)
1. Apply (11) once to compute updated covariarite
2. Create N-member sample of observation dist. by adding samples of obs. €tror to y

3. Apply (12) N times to compute updated ensemble memyers,
ReplaceyP with ith prior ensemble membef,y
Replace § with ith value from random sample’;y

0)

y
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Details of Step 5: Compute state var. increments from obs. variable increments

Regression using joint sample statistics from ensembles: can be done sequentially!

Ya

+Observation

Least Squares Fi
(Regression of
X ony)

Regression begins with
least squares fit to sam-

ple,*

Increments for state
variable, x, multiplied
by |correl(x, y)|

Large sample size
needed to filter ‘noise’

Trade-offs withlocal’
linearization
Precision vs. accuracy



A Host of Challenges Remain

Problem 1Sampling error impacts estimates of increments
Key: estimates of regression coefficients have errors

Many obs. with small (or zero) expected correlations => error build-up

Solution: Reduce impact of observations as function of ensemble size, sample correlation,
and expected distribution of correlation
But...need this prior estimate (may be mostly unknown?)

For now, use distance dependent envelogedace impact of remote obsations

A 1 Even selecting envelope is tricky
for now.

g
0 Distance



Problem 2lnitial conditions for ensembles

Key: Bayesian, assumes initial ensembles are magically available

Solution: For ergodic models spin-up by running ensemble a very long time from
arbitrary initial perturbations, slowly ‘turn on’ observations

But... this may be impossible for some models (WRF regional applications)
Given prior knowledge of expected correlations (see problem 1) should be able to generate
appropriate ensemble ICs

Still a topic for ongoing research



Problem 3 Assimilation of \ariables with discrete disttions

Key: ensemble prior may indicate zero probability of an event that is occurring
l.e. All ensemble members say no rain but rain is observed

Directly related to existence of discrete convective cells

Solutions: Apply methods for accounting for model error

Redefine state variables to avoid discrete probability densities

Research on this problem is in its infancy



4D-Variational (4D-\ar): State of the Art for Global &dther Prediction

Find model trajectory through time minimizing measure of departure from observations

Applied over some finite period of observations

For optmizaton, ned gradient d norm

with respect to initial state,X
¥ Key: integrating adjoint of linear tangent
% e model linearized around forward non-
— x linear trajectory backward in time
\ allows computation of gradient with
* % single integration pair
Modified x; with
improved fit to Sime This makes 4D-Var feasible as long as
observations

period is short and number of iterations
needed for optimization is small

Additional problems:

1. Model ‘balance’ constraints may not be satisfied for finite optimization periods
2. Still hard to generate adjoints for complicated models
3. May need to relax constraints to deal with m@iélS



Exciting Opportunities Abound in Data Assimilation

Field is maturing, basic theory well-understood

Increasingly powerful heuristic methods being developed

Some new methods (like filter) are very simple to implement (naively)
Software engineering advances make it easier to access models and data
NCAR/NOAA are building a prototype facility for exploring DA

1. The challenges are opportunities!

2. Plethora of models and observations that have not been touched!

3. Improved assimilation application to existing high profile problems!
Example: Getting more from existing data, surface pressure observations

Example: Quality control of observations: using good data, rejecting bad



Data Assimilation Opportunities (cont.)

4. Using data to improve models!

Example: Application in simple low-order model

5. Stochastic (ensemble) prediction

6. Evaluating and designing observing systems!
(Observing / Assimilation System Simulation Experiments)
What is information content of existing observations?
What is value of additional proposed observations?
Use of targeted (on demand) observations

Potential for extremely high impact (if you can stand the heat)



Challenge #1: Model Bias (Systematic Error)

Filter equations assume prior estimate (and observations) are unbiased
Questionable for Observations, ridiculous for Models
Biased prior estimate will cause observations to be given too little weight

Repeated applications lead to progressively less weight, estimate can diverge

OBSERVATI

Implications are obvious for 4D-Var, too



Dealing with model bias is mostly an open question:

1. Can reduce confidence in model prior estimates by some constant factor

2. Explicitly model the model bias as an extended state vector and assimilate coefficients
of this bias model

Model: dx/dt = F(x)
Model plus bias model:  dx/dt = F(x)eft); de/dt =0

wheree is a vector of the same length as x

Very tricky: if we knev much about modeling the bias, we could reeni




Challenge #2: Balances and Attractors

Many models of interest have balances, both obvious (say geostrophic) and subtle
The structure of the model ‘attractors’ may be extremely complex

In some cases, off-attractor perturbations may lead to ‘large’ transient response
Example: High frequency gravity waves in some Primitive Equation models

The behavior of these transients can lead to model bias

In this sensegven perfect model experiments can have large model bias

Understanding how to minimize this behavior or limit its impact is a fun problem

The continuous system may also have balances, obvious and subtle

Unclear how differences between model and continuous ‘attractors’ impacts assimilation



Example of model balances: Lorenz 9-Variable Model

Time series of Ensemble Filter Assimilation for variable X

llocal/home/assim/pe/9var0

-0.0107 . . . . . . . . . Equilibrated model has small
10 of 20 Ensembles) high frequency variability

-0.0108
— Ensemble Mean )
Perturbing off attractor leads

to transient, high amplitude,
high frequency waves
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Challenge #3: Assimilation of Discrete Distitibns

Exampe: asamilaton d con-
vective elements

Prior is ‘certain’ that there are
Updated no convective cells outside
d ﬁ%%%mble the green areas
Observations indicate discrete
areas outside the green

Observations—

This is indicative of highly
non-linear problem

Ensemble techniques, at best, tend to smear out prior discrete structures
4D-Var is likely to have non-global local minima
But, we think we knay what we vant to do

Keep information from prior on larger scale ‘background’

Introduce cells where observed
Requires new norms or ways to deal with model bias as function of scale



Quality Control of Obsemtions

Methods to exclude erroneous observations:

1. Discard impossible values (negative R.H.)
2. Discard values greatly outside climatological range

3. Discard values that are more tlaprior ensemble sample standard deviations
away from prior ensemble mean

4. ‘Buddy’ checks for pairs of observations: just apply chi-square test using prior
ensemble covariance and label pair as inconsistent if threshold value exceeded

Y2
A

When both prior and observations can
be inconsistent with our prior expecta-
tions, detecting and excluding these
- Y1 errors can b&¥’ERY DIFFICULT




Using Data Assimilation to Constrain ModedrBmeters

Example from another low-order model: Lorenz-96 Model

Variable size low-order dynamical system
N variables, X, X,,..., Xy
dXj/dt = (X1 - Xj2)Xip - Xj + F
I =1,..., N with cyclic indices
Use N =40, F = 8.0, 4th-order Runge-Kutta with dt=0.0

12 T

| | | | | | |
(0] 50 100 150 200 250 300 350 400



Lorenz-96Free Brcing Model Filter

20 Member Ensemble (10 Plotted) Obs Every 2 Steps of State Variables only
Truth in Yellow (8.0) Ensemble
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Many models include a number of poorly know free parameters
May be able to improve models by using data to constrain these
Observation system parameters can also be constrained by data (obs. error for instance)
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Evaluating and Designing Observing Systems: Information Content of Observations

255

Example: What is information
content of surface pressure
observations in an atmo-
spheric GCM?

Observing System Simula-
tion Experiment (OSSE) with
an Ensemble Filter

Observations generated from

ir@ model run (truth in green)

Same model assimilates

Surface pressure is able to
closely constrain entire atmo-
sphere

Figure shows mid-latitude,
mid-troposphere temperature



Advances and Opportunities in Data Assimilation for yn@eoplysical Studies

Advances:

Field is maturing; theory and methods that are easy to apply
Software engineering advances make it easier to get started
Efforts like Data Assimilation Research Testbed (DART) underway

Opportunities:
A. A plethora of untouched models and observations
B. Improved assimilation methods for existing problems
C. Improved use of existing observations; quality control
D. Using data to improve models
E. Evaluating value of existing observations
F. Evaluating future observing systems
G. Adaptive observations



