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I. Overview and some methods
Big problems require clever simplification

II. Challenges
A. Model bias
B. Balances and attractors
C. Assimilation and discrete distributions

III. Opportunities
Field is maturing; theory and methods that are easy to app
Software engineering advances make it easier to get starte
Efforts like Data Assimilation Research Testbed (DART) un
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The Data Assimilation Problem

Given: 1. A physical system (atmosphere, ocean...)
_____________________________________

2. Observations of the physical system

Usually sparse and irregular in time and sp
Instruments have error of which we have a
Observations may be of ‘non-state’ quantit
Many observations may have very low info

_____________________________________

3. A model of the physical system

Usually thought of as approximating time e
Could also be just a model of balance (attr
Truncated representation of ‘continuous’ p
Often quasi-regular discretization in space
Generally characterized by ‘large’ systema
May be ergodic with some sort of ‘attractor



t all three pieces:
_

_

tics

ation
_

We want to increase our information abou
________________________________________________

1. Get an improved estimate of state of physical system

Includes time evolution and ‘balances’
Initial conditions for forecasts
High quality analyses (re-analyses)

________________________________________________

2. Get better estimates of observing system error characteris

Estimate value of existing observations
Design observing systems that provide increased inform

________________________________________________

3. Improve model of physical system

Evaluate model systematic errors
Select appropriate values for model parameters
Evaluate relative characteristics of different models
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Examples:

1. Numerical Weather Prediction
Model: Global troposphere / stratosphere O(1 degree by
Observations: radiosondes twice daily, surface observat

reports, satellite radiances, etc.

2. Tropical Upper Ocean State Estimation (EN
Model: Global (or Pacific Basin) Ocean O(1 degree by 5
Observations: Surface winds (possibly from atmospheric

XBTs, satellite sea surface altimetry

3. Mesoscale simulation and prediction
Model: Regional mesoscale model (WRF), O(1km resolu
Observations: Radial velocity from Doppler radar returns

4. Global Carbon Sources and Sinks
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Nonlinear Filtering (A Bayesian Perspecve

Dynamical system governed by (stochastic) DE:

Observations at discrete times:

Observational error is white in time and Gaussian (nice, not e

Complete history of observations is:

Goal: Find probability distribution for state at time t:

dxt f xt t,( )= G xt t,( )dβt+ t 0≥,

yk h xk tk,( )= vk k;+ 1 2 … tk 1+ tk>;, ,=
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Nonlinear Filtering (cont.)

State between observation times obtained from DE

Need to update state given new observation:

Apply Bayes’ rule:

Noise is white in time (3) so:

Also have:
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Nonlinear Filtering (cont.)

Probability after new observation:
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tions are known:
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0 million)

oid exponential solution time
General methods for solving the filter equa

1. Advancing state estimate in time

2. Taking product of two distributions

But, these methods arefar too expensive for probl

1. Huge model state spaces (10 is big!), NWP models at O(1

2. Need truncated representations of probabilistic state to av
and storage
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The ART of Data Assimilation

Find heuristic simplifications that make approximate solution

1. Localization (spatial or other truncated basis)

2. Linearization of models, represent time evolution as linear
(around a control non-linear trajectory)

3. Represent distributions as Gaussian (or sum of Gaussians

4. Monte Carlo methods

5. Application of simple balance relations

6. Many others...
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Kalman Filter

Simplifications:

1. Linearization of model around non-linear control trajec

2. Error distributions assumed Gaussian

Fundamental Problem:

Still too expensive for large models

Advancing covariance in linearized model is at least:

O(model_size * model_size)
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Filter

time 1

time 2

Assimilation
(Gaussian)

Advance mean
with model;
Advance
covariance with
linearized model.

Observations
(Gaussian)

Prior
(Gaussian)
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Reduced Space Kalman Filters:

Additional simplification:

Assume that covariance projects only on small subspace

Evolving covariance in linearized model projected on su

Subspace selection:

1. Dynamical: use simplified model based on some sort 

2. Statistical: use long record of model (or physical syste
which most variance occurs (EOF most common to

Problems:

1. Dynamics constrained to subspace may provide inacc

2. Observations may not ‘project strongly’ on subspace

3. Errors orthogonal to subspace unconstrained, model 
quickly prove fatal



s smaller than state space

nerally used for computing

samples)

rror

 members

 APPLICATION
Ensemble Kalman Filters:

Simplifications:

1. Monte Carlo approximation to probability distributions

2. Localization in space, avoids degeneracy from sample
and reduces sampling noise

3. Gaussian representation of probability distributions ge
update

Problems:

1. Selecting initial samples for ensembles (Monte Carlo 

2. Determining degree of spatial localization; sampling e

3. Maintaining appropriate model ‘balances’ in ensemble

BUT, UNPRECEDENTED EASE OF INITIAL



re) to time
How an Ensemble Filter Works

Ensemble state
estimate after using
previous observation
(analysis)

Ensemble state at time
of next observation
(prior)

tk tk+1

1. Use model to advanceensemble(3 members he
at which next observation becomes available

*
*
*
*
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How an Ensemble Filter Works

2. Get prior ensemble sample of observation,
applying forward operator H to each ensembl

Theory
from in
uncorre
be don

y

*
*
*
*

H H
H
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How an Ensemble Filter Works

3. Getobserved valueandobservational error dis
from observing system

y
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*
*
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H H
H
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How an Ensemble Filter Works

4. Findincrement for each prior observation en
(this is a scalar problem for uncorrelated obse
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How an Ensemble Filter Works

5. Use ensemble samples of y and each state
regress observation increments onto state var

y
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 variable are updated,
 observation...

y

tk+2
How an Ensemble Filter Works

6. When all ensemble members for each state
have a new analysis. Integrate to time of next

y

*
*
*
*

H H
H

tk
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Details of Step 4: Finding Increments for Observation Variabl

Scalar Problem: Wide variety of options available and afforda

1. Perturbed Observation Ensemble Kalman Filter (

2. Ensemble Adjustment Kalman Filter (EAKF); dete
__________________________________________

Key to Kalman Filters: Product of Gaussians is Gaussian

Prior ensemble sample meanyp and varianceΣp

Observation yo with observational error varianceΣo

Posterior Variance is:

and mean is:

Σu Σp
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Filter (EnKF)

 samples of obs. error to yo

bers,u
i

erior)
Details of Step 4: Perturbed Observation Ensemble Kalman 

1. Apply (11) once to compute updated covarianceΣu

2. Create N-member sample of observation dist. by adding

3. Apply (12) N times to compute updated ensemble memy

Replaceyp with ith prior ensemble member, yp
i

Replace yo with ith value from random sample, yo
i

** **

** * *

* * * *

Observation

Prior

Updated (Post

yo
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 be done sequentially!

egression begins with
ast squares fit to sam-

le,*

crements for state
riable, x, multiplied

y |correl(x, y)|

arge sample size
eeded to filter ‘noise’

rade-offs with‘local’
earization:

recision vs. accuracy
Details of Step 5: Compute state var. increments from obs. v

Regression using joint sample statistics from ensembles: can

*
*

* *
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A Host of Challenges Remain

Problem 1.Sampling error impacts estimates of increments

Key: estimates of regression coefficients have errors

Many obs. with small (or zero) expected correlations => 

Solution: Reduce impact of observations as function of ensem

and expected distribution of correlation

But...need this prior estimate (may be mostly unknown?

For now, use distance dependent envelope toreduce impact of re

D0

1
Even sele
for now.
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1) should be able to generate
Problem 2.Initial conditions for ensembles

Key: Bayesian, assumes initial ensembles are magically

Solution: For ergodic models spin-up by running ensemb
arbitrary initial perturbations, slowly ‘turn on’ observation

But... this may be impossible for some models (WRF regiona

Given prior knowledge of expected correlations (see problem
appropriate ensemble ICs

Still a topic for ongoing research
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Problem 3.Assimilation of variables with discrete distributions

Key: ensemble prior may indicate zero probability of an 

i.e. All ensemble members say no rain but rain is observ

Directly related to existence of discrete convective cells

Solutions: Apply methods for accounting for model error

Redefine state variables to avoid discrete probability den

Research on this problem is in its infancy
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parture from observations

nite optimization periods

 need gradient of norm
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timization is small
4D-Variational (4D-Var): State of the Art for Global Wea

Find model trajectory through time minimizing measure of de

Applied over some finite period of observations

Additional problems:
1. Model ‘balance’ constraints may not be satisfied for fi
2. Still hard to generate adjoints for complicated models
3. May need to relax constraints to deal with modelBIAS

* * *
* * *

Initial guess for x0

Modified x0 with
improved fit to
observations time

For optimization,
with respect t

Key: integrating 
model lineariz
linear trajecto
allows compu
single integra

This makes 4D-
period is shor
needed for op
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dels and data
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Exciting Opportunities Abound in Data

Field is maturing, basic theory well-understood

Increasingly powerful heuristic methods being developed

Some new methods (like filter) are very simple to implement 

Software engineering advances make it easier to access mo

NCAR/NOAA are building a prototype facility for exploring DA

1. The challenges are opportunities!

2. Plethora of models and observations that have not been to

3. Improved assimilation application to existing high profile p

Example: Getting more from existing data, surface pressur

Example: Quality control of observations: using good data,
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Data Assimilation Opportunities 

4. Using data to improve models!

Example: Application in simple low-order model

5. Stochastic (ensemble) prediction

6. Evaluating and designing observing systems!

(Observing / Assimilation System Simulation Experimen

What is information content of existing observations?

What is value of additional proposed observations?

Use of targeted (on demand) observations

Potential for extremely high impact (if you can stand the
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e unbiased
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Challenge #1: Model Bias (System

Filter equations assume prior estimate (and observations) ar

Questionable for Observations, ridiculous for Models

Biased prior estimate will cause observations to be given too

Repeated applications lead to progressively less weight, esti

Implications are obvious for 4D-Var, too

PRIOR

OBSERVATION

* * *
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constant factor
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Dealing with model bias is mostly an o

1. Can reduce confidence in model prior estimates by some 

2. Explicitly model the model bias as an extended state vecto
of this bias model

Model: dx/dt = F(x)

Model plus bias model: dx/dt = F(x) +ε(t); dε/dt =

whereε is a vector of the same length as x

Very tricky: if we knew much about modeling the bias, we cou
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Challenge #2: Balances and Att

Many models of interest have balances, both obvious (say ge

The structure of the model ‘attractors’ may be extremely com

In some cases, off-attractor perturbations may lead to ‘large’

Example: High frequency gravity waves in some Primitive Eq

The behavior of these transients can lead to model bias

In this sense,even perfect model experiments can have large 

Understanding how to minimize this behavior or limit its impa

The continuous system may also have balances, obvious an

Unclear how differences between model and continuous ‘attr
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ble high frequency
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 is apparent model bias
emble members on one
 truth)
Example of model balances: Lorenz 9-Variable Model

Time series of Ensemble Filter Assimilation for variable X1
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Challenge #3: Assimilation of Discrete Dist

Ensemble techniques, at best, tend to smear out prior discre

4D-Var is likely to have non-global local minima

But, we think we know what we want to do

Keep information from prior on larger scale ‘background

Introduce cells where observed

Requires new norms or ways to deal with model bias as func

Prior Ensemble

Observations

Updated
Ensemble
Mean

Exampl
vective

Prior is
no co
the g

Observ
areas

This is 
non-line



le standard deviations

i-square test using prior
 if threshold value exceeded

 and observations can
ith our prior expecta-
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Y DIFFICULT
Quality Control of Observations

Methods to exclude erroneous observations:

1. Discard impossible values (negative R.H.)

2. Discard values greatly outside climatological range

3. Discard values that are more thanα prior ensemble samp
away from prior ensemble mean

4. ‘Buddy’ checks for pairs of observations: just apply ch
ensemble covariance and label pair as inconsistent

y1

y2

*

*

When both prior
be inconsistent w
tions, detecting a
errors can beVER
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Using Data Assimilation to Constrain Model Para

Example from another low-order model: Lorenz-96 Model

Variable size low-order dynamical system

N variables, X1, X2,..., XN

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F

            i = 1,..., N with cyclic indices

Use N = 40, F = 8.0, 4th-order Runge-Kutta with dt=0.0
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Lorenz-96Free Forcing Model Filter

20 Member Ensemble (10 Plotted) Obs Every 2 Steps
Truth in Yellow (8.0) Ensemble

Many models include a number of poorly know free paramete
May be able to improve models by using data to constrain th
Observation system parameters can also be constrained by 
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Evaluating and Designing Observing Systems: Information C
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Advances and Opportunities in Data Assimilation for may G

Advances:

Field is maturing; theory and methods that are easy to a
Software engineering advances make it easier to get sta
Efforts like Data Assimilation Research Testbed (DART)

Opportunities:
A. A plethora of untouched models and observations
B. Improved assimilation methods for existing problems
C. Improved use of existing observations; quality control
D. Using data to improve models
E. Evaluating value of existing observations
F. Evaluating future observing systems
G. Adaptive observations


