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Assimilation Algorithm:

Ensemble adjustment filter (Monte Carlo a

Hierarchical group filter used to control sa
4 groups x 20 ensemble members = 80

Systematic error correction for prior bias in

Verified by comparing to observations in o
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How an Ensemble Filter Works
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How an Ensemble Filter Works
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How an Ensemble Filter Works
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How an Ensemble Filter Works
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How an Ensemble Filter Works

5. Use ensemble samples of y and each state
regress observation increments onto state var
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How an Ensemble Filter Works

6. When all ensemble members for each state
have a new analysis. Integrate to time of next
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Model:
CAM 2.0 T42L26
U,V, T, Q and PS state variables impacted
Restarting time stepping after each assimi
Land model (CLM 2.0) not impacted by ob
Observed SSTs

Status of Assimilation System:
Initial version complete
Uses observations used in reanalysis

(Radiosondes, ACARS, Satellite Winds
Initial tests for first week of January, 2003
Assimilated every 6 hours
No ensemble quality control yet
Run on CGD linux cluster Anchorage
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CAM RESULTS: ENSEMBLE MEAN RMS TE
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 Temperature BIAS
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CAM RESULTS: Ensemble Mean Time Mean
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NCEP GFS BIAS (Left), RMS (right): Black An
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500mb Height Comparison to NCEP CDAS Anal
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Conclusions

1. An assimilation / prediction capability now e
2. Confront CAM with observations; see bias 
3. CAM appears to have VERY low forecast b
4. Could look for parameterization errors?

Future plans:

1. Continue improving assimilation system
2. Ensemble quality control to eliminate bad o
3. Longer range forecast experiments
4. Allow observations to impact CLM land stat
5. Test assimilation of GPS radio occultation o
6. Higher resolution / new versions??? (Does 
7. WACCM??? (Can anyone afford it?)


