An Ensemble Data Assimilation System for CAM

Jeff Anderson, Kevin Raeder, Hui Liu, Tim Hoar NCAR Data Assimilation Initiative (DAI) 9 March, 2004

DAI Building Global Assimilation / Prediction System with CAM GCM

<u>CGD Gains</u> Prediction System Capability Compare CAM to Forecast Models Model Deficiency Detection Enhanced Model Credibility

DAI Gains

Experience with Global Models Experience with Standard Observations Testbed for Assimilation Systems Demo of Ensemble Filter Capabilities Assimilation Algorithm:

Ensemble adjustment filter (Monte Carlo approach)

Hierarchical group filter used to control sampling error 4 groups x 20 ensemble members = 80 members total

Systematic error correction for prior bias in observation space

Verified by comparing to observations in observation space

2

1. Use model to advance ensemble (3 members here) to time at which next observation becomes available

2. Get prior ensemble sample of observation, y=H(x), by applying forward operator H to each ensemble member

Theory: observations from instruments with uncorrelated errors can be done sequentially.

3. Get observed value and observational error distribution from observing system

6

4. Find increment for each prior observation ensemble (this is a scalar problem for uncorrelated observation errors)

7

5. Use ensemble samples of y and each state variable to linearly regress observation increments onto state variable increments

6. When all ensemble members for each state variable are updated, have a new analysis. Integrate to time of next observation...

Model:

CAM 2.0 T42L26 U,V, T, Q and PS state variables impacted by observations Restarting time stepping after each assimilation Land model (CLM 2.0) not impacted by observations Observed SSTs

Status of Assimilation System:

Initial version complete

Uses observations used in reanalysis (Radiosondes, ACARS, Satellite Winds...) Initial tests for first week of January, 2003 Assimilated every 6 hours No ensemble quality control yet Run on CGD linux cluster Anchorage

CAM RESULTS: ENSEMBLE MEAN RMS TEMP. ERROR

AMWG March 04

CAM RESULTS: Ensemble Mean Time Mean Temperature BIAS

NCEP GFS BIAS (Left), RMS (right): Black Analysis, Red Guess

500mb Height Comparison to NCEP CDAS Analysis; Jan. 7, 2003

AMWG March 04

Conclusions

15

1. An assimilation / prediction capability now exists for CAM 2.0

- 2. Confront CAM with observations; see bias (tropopause height?)
- 3. CAM appears to have VERY low forecast bias in troposphere
- 4. Could look for parameterization errors?

Future plans:

- 1. Continue improving assimilation system
- 2. Ensemble quality control to eliminate bad observations
- 3. Longer range forecast experiments
- 4. Allow observations to impact CLM land state
- 5. Test assimilation of GPS radio occultation observations
- 6. Higher resolution / new versions??? (Does anyone care?)
- 7. WACCM??? (Can anyone afford it?)