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The Background Observing Network
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What type of problem is of interest?
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The Problem
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For X dollars - can purchase 8 new RED
TYPE instruments
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The Problem

Lat

Lon

To assess the value - must find the optimal
locations of the MOVABLE observations given
the BACKGROUND network
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The Problem

Lat

Lon

Field experiments are often impractical,
expensive and time consuming
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The Problem

Lat
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Use simulations of the
forecasting/assimilation cycle (can include
economic benefit models)
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The Problem
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The goal is to use the simulations as a guide
in designing real networks of observations
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The Problem
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To assess value - we must have a suitable
framework for optimizing networks
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The Problem
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This type of problem is central to THORPEX
(a current 10 year international predictability
experiment)
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Evaluating the Value of H1 Using OSSEs
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   ...

H1 includes both MOVABLE and
BACKGROUND observations
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Evaluating the Value of H1 Using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

Averaging independent error estimates
amounts to an evaluation of an objective
function Φ(H1)
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Evaluating the Value of H1 Using OSSEs

X1

X2

T*

T*_1
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T*_3

T*_4

   ...

Our objective - minimize Φ
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Evaluating the Value of H1 Using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

Simple optimization method - try all
conceivable configurations of H1 and pick the
minimum
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Evaluating the Value of H1 Using OSSEs

X1

X2

T*

T*_1

T*_2
T*_3

T*_4

   ...

For more advanced optimization techniques -
still need to evaluate Φ many times and it
should be smooth
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Evaluating the Value of H1 Using OSSEs
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T*_4

   ...

For realistic GCMs - using OSSEs to evaluate
Φ is expensive
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Approximating Information Derived from OSSEs

Error

Observation Location

OSSE
Approximate

Similar Optimal Solutions

How can we obtain a statistically and dynamically
significant approximation of information derived from
OSSEs?
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A Solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
   H-background

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Trial network H1 made up of Hbackground and
Hmovable
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A Solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
   H-background

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Begin by running OSSEs with Hbackground and
store ensemble forecasts
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A Solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
   H-background

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Need to assess added information if network
is switched to H1
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A Solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
   H-background

         SAVE
   FORECASTS

T_i-m

T_m

T_i

For each initial time - could begin an OSSE
under the influence of H1 - still expensive
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A Solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
   H-background

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Some approximation needs to be introduced
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A Solution - Retrospective Design Algorithm

X2

X1

RUN OSSEs WITH
   H-background

         SAVE
   FORECASTS

T_i-m

T_m

T_i

Technique makes use of ensembles
generated from the OSSE with Hbackground
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Retrospective Design Algorithm II

t_i

H_background

An ensemble forecast generated at t_i during 

the OSSE with H_background
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Retrospective Design Algorithm II

t_i

H_background H_1 = H_background + H_movable
From t_i+1 onward, assume the observing network
is H_1 - the trial network

Want to compute the covariance of the atmosphere
 given H_1 for some time t > t_i
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Retrospective Design Algorithm II

t_i

H_background H_1 = H_background + H_movable

Without re-running the forecast model - an EnKF
based algorithm exists for computing  the atmosphere’s
covariance at t > t_i given trial network
H_1 = H_background + H_movable - KEY POINT
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Retrospective Design Algorithm II

t_i

H_background H_1 = H_background + H_movable

Theory says that:
Covariance at t > t_i equivalent to what would be obtained
via a sequential in time filtering procedure for linear dynamics

Useful information for weakly nonlinear evolution
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Retrospective Design Algorithm II

t_i

H_background H_1 = H_background + H_movable

- Must consider linear dynamical time scale!
- Sampling errors must be handled properly!
- Method expected to work well for systems 
  that adjust quickly to observations - evidence
  in CAM results 
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Retrospective Design Algorithm II

t_i

H_background H_1 = H_background + H_movable

Computational cost

~ Cost of assimilating number of MOVABLE obs 

Again, no repeated integrations of model equations
required
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Evaluate the Objective Function using the RDA

X2
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     *UPDATED*
Archived Ensemble
   Forecasts with
    Trial Network 
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T_i-M

T_m

T_i

– p.9



Surface Pressure Network Design in a GCM
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BACKGROUND network of surface pressure
observations - 7 mb observational standard
deviation - assimilate every 12 hours
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Surface Pressure Network Design in a GCM
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Run an EAKF with N = 20 ensemble
members (with localization and no inflation) in
a Held-Suarez configuration of an AGCM
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Surface Pressure Network Design in a GCM
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Model is forced with a zonally symmetric pole
to equator temperature gradient, with
boundary layer friction
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Surface Pressure Network Design in a GCM
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Low resolution - 5 vertical levels and 60× 30
horizontally
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Surface Pressure Network Design in a GCM
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Temperature gradient drives a baroclinically
unstable flow in the mid-latitudes
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The Experiment
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Comparison of Cost Functions I
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Comparison of Cost Functions II
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Conclusions

The ability of the Retrospective Design Algorithm to
mimic information derived by running OSSEs has been
demonstrated for non-trivial design problems in a GCM

The motivation for using the Retrospective Design
Algorithm is computational efficiency

Can envision using the RDA for network design in
realistic prediction systems - key is efficiency in
computing Φ allows for use of optimization

The RDA is not system specific

Working actively on Adaptive Observations (Targeting)
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Interactions with DART

Have used DART almost exclusively for last
two years of my PhD research

Have made extensive use of low-order and
general circulation models in DART

One addition to DART that is a natural
consequence of my research will be
ensemble smoothers
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