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A Survey of Ensemble Filtering in the Data Assimilation Research Testbed

(Note: In the following, input that students need to enter are in bold, underlined text. Text that
be output to a workstation window is indicated by italicized text.)

I. Overview of DART

This section will give a brief high-level overview of DART. Section II will give a hands-on rec
pitulation of much of this material preparing students to use the system.

The Data Assimilation Research Testbed (DART) is designed to facilitate the combination o
assimilation algorithms, models, and observation sets to allow increased understanding of 
three. (see www.cgd.ucar.edu/DART/obs_set_specification.pdf for a more in-depth design d
sion). For the ASP colloquium, a subset of the complete DART facility will be used to exam
ensemble filter assimilation algorithms using synthetic observations. Synthetic observation
generated from a ‘perfect’ model integration, which is often referred to as the ‘truth’ or a ‘na
run’. A model is integrated forward from some set of initial conditions and observations are
erated as

y = H(x) +ε
where H is an operator on the model state vector, x, that gives the expected value of a set of
vations, y, andε is a random variable with a distribution describing the error characteristics of
observing instrument(s) being simulated. Using synthetic observations in this way allows stu
to learn about assimilation algorithms while being isolated from the additional (extreme) co
plexity associated with model error and unknown observational error characteristics. In oth
words, for the real world assimilation problem, the model has (often substantial) differences
what happens in the real system and the observational error distribution may be very compl
and is certainly not well known. Students should be careful to keep these issues in mind w
exploring the capabilities of the ensemble filters with synthetic observations.

A. Working with DART

For the ASP workshop, DART programs must be compiled and run on the compute server 
tillo’ while analysis is mostly performed on the DEC workstations in the Layton computer la
Unfortunately, the MMM compute environment does not currently have a disk system that i
cross-mounted between both the slave computing nodes on ‘ocotillo’ and the DEC systems
means that students will be producing DART output on slave nodes on ‘ocotillo’, but will hav
explicitly transfer these files via ‘ftp’ to the DEC machines for analysis. This is less than ideal
students are forewarned to remember to transfer files before doing each analysis step. A c
nient method of operation is to open three windows on the DEC workstation: one open to t
directory on the DEC system in which analysis is being performed, one open to the ‘ocotillo
slave node on which computation is being performed, and one an ftp window with a pre-es
lished connection from the DEC analysis directory to the ‘ocotillo’ working directory. A sing
execution of the command

mget *.nc
in this ftp window will move the latest analysis files from the compute to the analysis platfor
See the exercise introduction (http://www.cgd.ucar.edu/DART/exercise_overview.pdf) and t
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slides at the end of the introductory presentation (http://www.cgd.ucar.edu/DART/
asp_summer_talk.pdf) for more on the computing environment.

DART is designed to be a highly ‘modular’ code, meaning that different parts of the system
be readily modified, or replaced by pieces of code with similar interfaces but different intern
actions. At the highest level, this means that complete models, observation set definitions, 
assimilation algorithms can be swapped into the system to form fundamentally different ass
tion systems. For instance, for the ASP workshop exercises a number of modules for comp
different numerical models will be swapped into a complete assimilation system all using th
same assimilation algorithm module. Many of the models will be able to use exactly the sa
modules to define observation sequences; however, some of the more complicated models
require that different observation modules be swapped into the system.

At a lower level, each part of the assimilation system (models, observations, and assimilati
algorithms) are composed of a set of Fortran-90 modules. The system is designed so that a
of these modules can be easily replaced by another Fortran-90 module with similar interface
different functionality. For instance, in one of the low-order models that will be examined, the
a circumstance in which adding random noise to the model’s time derivative is potentially in
esting. Students could write a new version of the model’s module, adding a random number
time tendency by writing a completely new module and swapping this for the existing one.

B. Getting the DART code

The DART system is maintained using a simple software version control facility called CVS
students in the ASP workshop are not anticipated to make major software updates to the D
software repository, CVS will not be used to control the software. Instead, students will be ab
copy a complete directory tree containing all components of DART to their own working dir
tory (/ocotillo2/mmm??/DART) on ‘ocotillo’ where ?? is your mmm account number. Studen
can then compile default versions of DART modules, make modifications to modules, or cre
their own versions of modules that can be used in DART assimilation systems.

Choosing the appropriate computer languages to create scientific software is a complex an
evolving process. For a variety of reasons, the computational portions of DART have been w
using the Fortran90 language. While Fortran continues to offer a convenient way to create 
cient executables on a variety of high-end platforms, it is clearly no longer a mainstream lang
with users confined to narrow sectors of the scientific and engineering fields. Even more un
are the applications of Fortran90 in DART where an attempt is made to mimic more moder
‘object-oriented’ languages. Students who have used Fortran before should find it relatively
to understand the internals of most of the DART modules, however, those with no Fortran e
ence will probably not have enough time to learn sufficient Fortran during the two week col
quium. These students should be quick to ask for assistance from the workshop organizers
need to understand the function of particular Fortran modules.

C. Compiling the DART code
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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DART executable programs are constructed using two dependency analysis tools, ‘make’ a
‘mkmf’. The ‘make’ utility is a relatively common piece of software used to record dependen
between different files and then to perform a hierarchy of actions when one or more of the fi
modified. The ‘mkmf’ utility is a preprocessor that generates a ‘make’ input file (Makefile) an
designed specifically to work with object-oriented Fortran90 (and other languages) for syst
like DART. As input, ‘mkmf’ requires two separate files. The first is a ‘mkmf template’ file whic
specifies details of the commands required for a specific Fortran90 compiler and may also co
pointers to directories containing pre-compiled utilities required by the DART system. The s
ond ‘mkmf’ input is a ‘path_names’ file which includes a complete list of the locations (either
ative or absolute) of all Fortran90 source files that are required to produce a particular DAR
program. Each path_names file must contain a path for exactly one Fortran90 file containin
main program, but may contain any number of additional paths pointing to files containing
Fortran90 modules. An ‘mkmf’ command is executed which specifies the path_names file an
mkmf template file and the result is the creation of a Makefile which can be used as input f
standard make utility. Shell scripts that execute the mkmf command for all standard DART 
cutables are provided as part of the standard DART software. For more information on mkm

(http://www.gfdl.noaa.gov/~lat/fms_public_release/public_manual_fms/
havana_public_manual.html#compiling%20the%20code).

Once mkmf is executed for a given program, the command
make

can be entered. The make program will survey existing compiled Fortran-90 modules and co
those which depend on modules that have been updated. The result is either a compilation
and premature termination or the creation of an executable program.Once an executable is
ated, it can be executed on one of the ‘ocotillo’ slave nodes.

WARNING: At present, ‘ocotillo’ is experiencing a persistent clock skew in which the slave
nodes do not share a synchronized time with the master node. In some unfortunate cases, t
lead to problems with the make program in two ways. First, make can produce an error sta
that clock skew has been detected. This may indicate that the executable program has not
properly linked. Second, make may fail to notice that a particular source file has been update
changes to the code will fail to be incorporated. For this reason, we strongly recommend th
command

make clean
be executed before each use of make. While this reduces the efficiency of the make proce
avoids most of the potential problems associated with clock skew on ‘ocotillo’.

D. Running DART Programs

DART programs can require three different types of input. First, some of the DART program
those for creating synthetic observational datasets, require interactive input from the keybo
For simple cases, this interactive input can be made directly from the keyboard. In more co
cated cases, a file containing the appropriate keyboard input can be created and this file ca
directed to the standard input of the DART program. Second, many DART programs expec
or more input files in DART specific formats to be available. For instance, the program
‘perfect_model_obs’ that creates a synthetic observation set given a particular model and a
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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description of a sequence of observations requires an input file that describes this observa
sequence. At present, all DART specific files are inefficient but human-readable ascii files. T
many DART modules (including main programs) make use of the Fortan90 namelist facility
obtain values of certain parameters at run-time. All programs look for a namelist input file c
‘input.nml’ in the directory in which the program is executed. The input.nml file can contain
sequence of individual Fortran90 namelists which specify values of particular parameters fo
modules that compose the executable program. A complete list of individual namelists that
relevant to the ASP colloquium can be found in Appendix VI. Unfortunately, the Fortran90
namelist interface is poorly defined in the language standard, leaving considerable leeway to
piler developers in implementing the facility. The Intel 7.0 compiler being used to create DA
programs on ‘ocotillo’ has some particularly unpleasant behavior when a namelist file contai
entry that is NOT defined in the program reading the namelist. Error behavior is unpredicta
but often results in read errors for other input files opened by DART programs. If you encou
run-time read errors, don’t hesitate to consult one of the colloquium staff to make sure that
error is not a result of namelist inconsistencies.

As noted, each student team will acquire their own copy of the complete DART software sys
When students want to make modifications to a particular DART module or other pieces of
DART, they can use their favorite editor to modify their copy. Following this with mkmf, mak
clean, and make will create executables that include the code modifications. In some insta
students may wish to create entirely new Fortran90 modules that provide a revised function
The preferred method for doing this would be for students to create a new module with the
Fortran module name and public interfaces as the original, but stored in a different file. The
for this new file should then replace the old path in the path_names file for mkmf for all progr
that use this module. It is essential that

make clean
be run when replacing a module in this fashion or the new module may not be incorporated
newly created executable.

E. DART analysis files

DART uses the NetCDF (http://www.unidata.ucar.edu/packages/netcdf/) self-describing dat
mat with a particular metadata convention to describe output that is used to analyze the res
assimilation experiments. These files have the extension .nc and can be read by a number
dard data analysis tools. Three sets of tools are available to work with NetCDF files for the
colloquium. First, the simple tool ncview is provided to do rudimentary graphical display of sli
of output data fields. ncview (http://meteora.ucsd.edu/~pierce/ncview_home_page.html) wi
of most use for output of the more comprehensive models at the end of the exercise set. Sec
set of tools called the NCO tools, produced by UCAR’s Unidata group, are available to do o
tions like concatenating, slicing, and dicing of NetCDF files (http://nco.sourceforge.net). Fin
a set of Matlab input scripts (Appendix I) designed to produce graphical diagnostics from D
NetCDF output files are available. These are used with the proprietary Matlab software (htt
www.mathworks.com/). In later portions of the exercises, students may wish to write their o
matlab scripts to do additional types of analysis. Matlab includes an on-line help facility. Se
matlab experts will also be available to consult during the scheduled exercise times for stud
who wish to do enhanced analysis.
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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II. A hands-on example: The Lorenz-63 model

This initial sequence of exercises includes detailed instructions on how to work with the DA
code and allows students to investigate basic features of one of the most famous dynamica
tems, the 3-variable Lorenz-63 model (Appendix II.1). The remarkable complexity of this sim
model will also be used as a case study to introduce a number of features of a simple ensem
ter data assimilation system.

A. Getting a local copy of the DART system

Begin by logging on to your account on the MMM DEC/COMPAQ workstations. From there p
ceed to login to the ‘ocotillo’ computing cluster master node via the command

ssh ocotillo
Next, login to your assigned ‘ocotillo’ slave node by issuing the command:

ssh node?
where ? is 1,2, ..., 10. (See Table 1 at the end of this document for a list of account numbe
corresponding ocotillo compute nodes). Storage for your account will be available in the dire

/ocotillo2/mmm??
where ?? is the number of your assigned mmm temporary account. Change to your working
tory:

cd /ocotillo2/mmm??
and copy the DART system directory tree

cp -rf /ocotillo2/jla/DART .   (don’t forget to type the . at the end).
You are now ready to compile a set of DART programs to do synthetic observation experimen
the L63 model. If at any time you need to retrieve the original version of any DART module
utilities, they can be obtained from /ocotillo2/jla/DART.

B. Compiling the DART code

For the ASP colloquium, DART executables will be constructed in a work subdirectory unde
directory containing code for the given model. In the DART directory you have just copied,
change to the L63 work directory

cd DART/models/lorenz_63/work
Listing the contents of this directory should reveal the following files:

CVS
filter_ics
input.nml
mkmf_create_obs_sequence
mkmf_create_obs_set_def
mkmf_filter
mkmf_perfect_model_obs
path_names_create_obs_sequence
path_names_create_obs_set_def
path_names_filter
path_names_perfect_model_obs
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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There are four mkmf files for the programs create_obs_set_def, create_obs_sequence,
perfect_model_obs, and filter along with the corresponding path_names files. You can exa
the contents of one of the path_names files, for instance path_names_filter, to see a list of
ative paths of all files that contain Fortran90 modules required for the program filter for the 
model. All of these paths are relative to the DART directory that you copied into your local s
age. The first path is the main program (filter.f90) and it is followed by all the Fortran90 mod
used by this program. The corresponding mkmf shell script files are considerably more cry
and their contents should not be relevant for the asp colloquium.

To create the first executable, execute the mkmf_create_obs_set_def file,
csh mkmf_create_obs_set_def

The result should be the creation of a file, Makefile, which contains input for the make utilit
you’re familiar with make you could take a look). Executing the command:

make
should result in a series of Fortran90 modules being compiled and a final link step that pro
the executable file, create_obs_set_def. The make utility will display a sequence of comma
followed by a list of all functions and subroutines in each module. A series of .o and .mod file
each module compiled will also be left in the work directory.

You can proceed to create the other three programs needed to work with L63 in DART by d
mkmf and make in turn for each:

csh mkmf_create_obs_sequence
make clean; make
csh mkmf_perfect_model_obs
make clean; make
csh mkmf_filter
make clean; make

C. Running the DART code

The DART system uses files called ‘observation sequence definition’ and ‘observation sequ
files to control the execution of an assimilation. An observation sequence definition file conta
complete description of a time series of observations but contains no observation values. E
observation in an observation sequence definition file has a time, a location and type, and 
observational error characterization associated with it. An observation sequence file contai
the information in an observation sequence definition file plus an observed value for each ob
tion. To perform a synthetic observation assimilation experiment for the L63 model, the follow
steps must be performed (an overview of the 5 steps is given first, followed by a recapitulat
with detailed procedures for each step):

1. Integrate the L63 model for a long time starting from arbitrary initial conditions in ord
to generate a model state that lies on the attractor. The ergodic nature of the L63 system m
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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long enough integration always converges to some point on the computer’s finite precision 
sentation of the model’s attractor.

2. Generate a set of ensemble initial conditions from which to start an assimilation. S
L63 is ergodic, the ensemble members can be designed to look like random samples from
model’s ‘climatological distribution’. To generate an ensemble member, very small perturba
can be introduced to the state on the attractor generated by step 1. This perturbed state can
integrated for a very long time until all memory of its initial condition can be viewed as forgott
Any number of ensemble initial conditions can be generated by repeating this procedure.

3. An ‘observation sequence definition’ is created to simulate a particular observing 
tem. This step is performed using the program create_obs_set_def which requires interact
input describing the observations.

4. An ‘observation sequence’ is created by integrating the model and using the infor
tion in the observation sequence definition file to create simulated observations as directed
entails operating on the model state at the time of the observation definition with an approp
forward operator (a function that operates on the model state vector to produce the expected
of the particular observation definition) and then adding on a random sample from the observ
error distribution specified in the observation sequence definition. At the same time, diagno
output about the ‘true’ state trajectory can be created.

5. The filter is run and the synthetic observations are assimilated; diagnostic output is
erated.

These 5 steps can be performed using the DART software as outlined below. The process o
ing the initial conditions for the truth integration and the filter are non-trivial and are describe
the rather lengthy steps 1 and 2. The L63/work directory contains files perfect_ics and filter
which contain sample output from steps 1 and 2. While diagnosing the behavior of the spin-
these two steps is intriguing, students may want to skip to step 3 and come back to steps 1 a
time permits.

1. Integrating the L63 model for a long time. Begin by creating an observation seque
definition file that spans a long time. When this is available as input to the program
perfect_model_obs, it will integrate the L63 model for the times spanned by the observatio
sequence definition. Creating an observation sequence definition is a two step procedure inv
the program create_obs_set_def followed by the program create_obs_sequence. Program
create_obs_set_def creates an observation set definition, the time-independent part of an 
tion sequence. An observation set definition file contains the location, type, and observatio
error characteristics (normally just the diagonal observational error variance) for a related s
observations. For step 1, all we are interested in is integrating the L63 model, not in genera
any particular synthetic observations. Begin by creating a minimal observation set definition
Enter:

create_obs_set_def
This program prompts for interactive input of a filename in which to create the observation 
definition:
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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Input the filename for output of observation set_def_list? [set_def.out]
A suggested default value,set_def.out, is provided so enter this name. Next, the program asks
the number of sets of observations you want to define. In general, for the exercises for the 
colloquium, only a single set is defined, so enter1 in response to the query:

Input the number of unique observation sets you might define
Next, the number of individual scalar observations (like a single surface pressure observati
the set is needed:

How many observations in set
To spin-up an initial condition for the L63 model, enter a1 to define a single observation. Next,
the error variance for this observation must be entered. Since we are not interested in this ob
tion having any impact on an assimilation (it will only be used for spinning up the model an
ensemble), enter a very large value for the error variance, like10000000, in response to the query:

Input error variance for this observation definition
An observation with a very large error variance has essentially no impact on deterministic fi
assimilations like the default variety implemented in DART.

Finally, the location and type of the observation need to be defined. For all types of models
most elementary form of synthetic observations are called ‘identity’ observations. These ob
tions are generated simply by adding a random sample from a specified observational erro
bution directly to the value of one of the state variables. In response to:

Input an integer index if this is identity observation, else -1
enter the number1. This defines the observation as being an identity observation of the first 
variable in the L63 model, normally referred to as x. The program will respond by terminati
after generating a file called set_def.out that defines the single identity observation of the x
able.

Next, an observation sequence definition file needs to be created containing this single obs
tion. The program create_obs_sequence takes an observation set definition file as input an
for information about when this observation set is observed in order to generate an observa
sequence definition file. Enter:

create_obs_sequence
and then enter:

set_def.out
to indicate the location of the observation set definition that you’ve just created. The option e
to create sequences in which the observation sets are observed at regular intervals or irregu
time. Here, all we need is a sequence that takes observations over a long period of time. En
to generate a regular sequence. Then enter 1000 in response to:

Input number of observations in sequence
Although the L63 system normally is defined as having a non-dimensional time step, the D
system somewhat arbitrarily defines the model timestep as being 3600 seconds. We want 
through several thousand time steps in order to spin-up the model onto the attractor, so en

1, 0 (that’s a comma between the 1 and 0, a blank works, too),
(this is 1 day and 0 seconds) in response to both questions:

Input time of initial ob in sequence in days and seconds
 and

Input period of obs in days and seconds
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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This will create an observation sequence file that contains a single observation each day fo
days (24000 time steps) after the initial time which is assigned to the initial model state. Fin
inputobs_seq.in as the name for the observation sequence definition file in response to:

Input file name for output of obs_sequence? [obs_seq.in]

Now, it’s time to use the program perfect_model_obs to advance an arbitrary initial state fo
24,000 time steps to move it onto the attractor. To do this, you need to make sure that the val
the Fortran-90 namelist file, input.nml, are set to appropriate values. In input.nml, the nameli
perfect_model_obs should have the following values set:

&perfect_model_obs_nml
   obs_seq_in_file_name = “obs_seq.in”,
   obs_seq_out_file_name = “obs_seq.out”,
   start_from_restart = .false.,
   output_restart = .true.,
   restart_in_file_name = “perfect_ics”,
   restart_out_file_name = “perfect_restart”,
   init_time_days = 0,
   init_time_seconds = 0,
   output_interval = 1
&end

The first two entries specify the file names for the input observation sequence definition file
the output observation sequence file generated by perfect_model_obs. Entry start_from_re
set to false, telling perfect_model_obs to generate an arbitrary initial condition that is not kn
to be on the L63 attractor. Output_restart is set to true indicating that the model state at the e
this integration will be output to the file perfect_restart which is specified as the
restart_out_file_name. Executing perfect_model_obs will integrate the model 24,000 steps
output the resulting state in the file perfect_restart.

 2. Generating ensemble initial conditions: The file perfect_restart can be now be copied to
perfect_ics

cp perfect_restart perfect_ics
and the namelist for perfect_model_obs can be modified to set start_from_restart = .true. A
quent integration of perfect_model_obs should now be performed which will advance the m
state from the end of the first 24,000 steps to the end of an additional 24,000 steps and pla
final state in the file perfect_restart.

The namelist for program filter should now be set to:
&filter_nml
   ens_size = 20,
   cutoff = 0.0
   cov_inflate = 1.0,
   start_from_restart = .false.,
   output_restart = .true.
   obs_sequence_file_name = “obs_seq.out”,
   restart_in_file_name = “perfect_ics”,
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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   restart_out_file_name = “filter_restart”,
   init_time_days = 0,
   init_time_seconds = 0,
   output_state_ens_mean = .true.
   output_state_ens_spread = .true.
   num_output_ens_members = 20
   output_interval = 1
&end

The ensemble size is set to 20 (used in most of the exercise sets) and the cut_off paramet
to 0 which limits the impact of any observations (this is discussed more below in Section III) s
in this ensemble spin-up run no impact from observations is desired. The filter is told to gen
its own ensemble initial conditions since start_from_restart is false. However, it is importan
note that the filter still makes use of the file perfect_ics which is set to be the restart_in_file_n
This is the model state generated from the first 24,000 step model integration by
perfect_model_obs and the filter program generates its ensemble initial conditions by rand
perturbing the state variables of this state. The arguments output_state_ens_mean and
output_state_ens_spread are true so that these quantities are output at every time for whic
are observations (once a day here) and num_output_ens_members means that the same di
files, Posterior_Diag.nc and Prior_Diag.nc also contain values for all 20 ensemble members
a day. Once the namelist is set, execute program filter to integrate the ensemble forward fo
24,000 steps with the final ensemble state written to the file filter_restart.

The spin-up of the ensemble can be viewed by examining the output in the netcdf files
True_State.nc generated by perfect_model_obs and Posterior_Diag.nc and Prior_Diag.nc 
ated by program filter. To do this, see the detailed discussion of matlab diagnostics in Appen
Try to understand how the ensemble errors grow. Taking a look at the L63 attractor time evol
as displayed by the built-in matlab commandlorenz may help, too. This will also give you a
chance to learn to use the interface to matlab’s three-dimensional visualization packages.

Copy the perfect_model_obs and filter restart files, perfect_restart (the ‘true state’) and
filter_restart to perfect_ics and filter_ics so that assimilation experiments can be initialized 
these spun-up states:

cp perfect_restart perfect_ics; cp filter_restart filter_ics
Two entries in the namelist for program filter should also be modified. Change start_from_r
to true (you’ve just generated an ensemble restart file for filter) and set restart_in_file_nam
“filter_ics”. This process has now generated files perfect_ics and filter_ics that are qualitativ
equivalent to those residing in the lorenz_63/work directory in /ocotillo2/jla/DART.

3. (Start here if you are using the pre-existing perfect_ics and filter_ics from the lorenz_63/
directory). Now, an observation sequence definition for doing assimilation tests can be gene
Begin by using create_obs_set_def to generate an observation set in which each of the 3 sta
ables of L63 is observed with an observational error variance of 1.0 for each observation. T
this, run create_obs_set_def using the following input sequence (the text including and after
comment and does not need to be entered):

set_def.out # Output file name
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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1 # Number of sets
3 # Number of observations in set (x, y, and z)
1.0 # Variance of first observation
1 # First ob is identity observation of state variable 1 (x)
1.0 # Variance of second observation
2 # Second is identity observation of state variable 2 (y)
1.0 # Variance of third ob
3 # Identity ob of third state variable (z)

Now, generate an observation sequence definition by runningcreate_obs_sequence with the fol-
lowing input sequence:

set_def.out # Input observation set definition file
1 # Regular spaced observation interval in time
1000 # 1000 observation times
0, 43200 # First observation after 12 hours (0 days, 3600 * 12 seconds)
0, 43200 # Observations every 12 hours
obs_seq.in # Output file for observation sequence definition

4. An observation sequence file is now generated by running perfect_model_obs with the na
values (these are the same as those in the last phases of step 1):

&perfect_model_obs_nml
   obs_seq_in_file_name = “obs_seq.in”,
   obs_seq_out_file_name = “obs_seq.out”,
   start_from_restart = .true.,
   output_restart = .true.,
   restart_in_file_name = “perfect_ics”,
   restart_out_file_name = “perfect_restart”,
   init_time_days = 0,
   init_time_seconds = 0,
   output_interval = 1
&end

This integrates the model starting from the state in perfect_ics for 1000 12-hour intervals o
ting synthetic observations of the three state variables every 12 hours and producing a Net
diagnostic file in True_State.nc.

5. Finally, the filter can be run with the namelist set to:
&filter_nml
   ens_size = 20,
   cutoff = 22222222.0
   cov_inflate = 1.0,
   start_from_restart = .true., # This value is changed from step 2
   output_restart = .true.
   obs_sequence_file_name = “obs_seq.out”,
   restart_in_file_name = “filter_ics”, # Value changed from step 2
   restart_out_file_name = “filter_restart”,
   init_time_days = 0,
   init_time_seconds = 0,
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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   output_state_ens_mean = .true.
   output_state_ens_spread = .true.
   num_output_ens_members = 20
   output_interval = 1
&end

The large value for the cutoff allows each observation to impact all other state variables (se
Appendix V for localization). Program filter produces two output diagnostic files, Prior_Diag
which contains values of the ensemble members, ensemble mean and ensemble spread fo
hour lead forecasts before assimilation is applied and Posterior_Diag.nc which contains sim
data for after the assimilation is applied (sometimes referred to as analysis values).

Now try applying all of the matlab diagnostic functions described in Appendix I. Try to unde
stand what the different tools can tell you about the performance of the assimilation and abo
attractor of the L63 model. Try looking at the joint behavior of the control integration and th
assimilation (both the ensemble mean and individual ensemble members) in phase space, to
can learn a lot about how assimilations fail even in this simple system.

III. Bias, filter di vergence and covariance inflation (with theL63 model)

One of the common problems with ensemble filters is filter divergence, which can also be an
with a variety of other flavors of filters including the classical Kalman filter. In filter divergen
the prior estimate of the model state becomes too confident, either by chance or because of
in the forecast model, the observational error characteristics, or approximations in the filter i
If the filter is inappropriately confident that its prior estimate is correct, it will then tend to gi
less weight to observations then they should be given. The result can be enhanced overcon
in the model’s state estimate. In severe cases, this can spiral out of control and the ensem
wander entirely away from the truth, confident that it is correct in its estimate. In less severe c
the ensemble estimates may not diverge entirely from the truth but may still be too confiden
their estimate. The result is that the truth ends up being farther away from the filter estimates
the spread of the filter ensemble would estimate. This type of behavior is commonly detect
using rank histograms (also known as Talagrand diagrams, etc., Appendix IV). You can see
rank histograms for the L63 initial assimilation by using the matlab script plot_bins.

A simple, but surprisingly effective way of dealing with filter divergence is known as covaria
inflation. In this method, the prior ensemble estimate of the state is expanded around its mea
constant factor, effectively increasing the prior estimate of uncertainty while leaving the prio
mean estimate unchanged. The program filter has a namelist parameter that controls the a
tion of covariance inflation, cov_inflate. Up to this point, cov_inflate has been set to 1.0 indica
that the prior ensemble is left unchanged. Increasing cov_inflate to values greater than 1.0 in
the ensemble before assimilating observations at each time they are available

whereγ is the covariance inflation factor, xi is the ith prior ensemble member for a state variab
x, andx is the ensemble mean of all members for x. Values smaller than 1.0 would actually
tract (reduce the spread) of prior ensembles before assimilating.

xi
inflated γ xi x–( ) x+=
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Examine the impacts of varying the value of covariance inflation for the L63 assimilation ca
above. You can do this by modifying the value of cov_inflate in the namelist, (try 1.05 and 1
and other values at your discretion) and run the filter as above. In each case, use the diagn
matlab tools to examine the resulting changes to the error, the ensemble spread (via rank h
gram bins, too), etc. What kind of relation between spread and error is seen in this model (
Appendix IV)?

IV. Impacts of observation quality and frequency (L63)

Assimilation algorithms can be viewed as extracting information from observations using mo
to provide estimates of time evolution of the system state. The amount of information availa
from observations can be viewed as increasing when the observational error variance is re
(in the case of gaussian error distributions that are used in the current DART implementatio
when the frequency of observations is increased. To observe this effect, try a sequence of 
for the observational error variance in the L63 experiments performed above. Since the ass
lated distributions are already very tight, it is most illuminating to begin by reducing the spec
error variance, for instance, try 2.0, 4.0, 8.0, etc. To do this, you will need to generate new 
vation sequences as outlined in Section II.3 above. As you continue to increase the error var
the observations should have less and less impact on the assimilation. Eventually, for large e
error variance the ensemble distribution should be indistinguishable from the climatology o
L63 model. Be sure to assess not only the error but also the ensemble spread, consistency
etc.

The impact of observation frequency with fixed observational error variance can be examin
the same way. Try increasing the period of observations to 1 day, 2 days, etc. To do this, yo
generate an observation set definition file and then run program create_obs_sequence with
ent observation frequency specified to generate different observation sequences. Program
perfect_model_obs and filter can be run and the output analyzed in each case. As observa
become less frequent, the prior distributions before the next observation should become le
less certain until they asymptote to the climatological distribution. Again, carefully analyze 
behavior of the assimilation with the tools detailed in Appendix I. It is particularly interesting
try to understand how the attractor structure comes into play in influencing these distributio

The amount of information available from observations can also be reduced in this L63 case
all of the components of the state vector are observed at every observation time. Examine 
happens if only state variable 1 (x), state variable 2 (y), or state variable 3 (z) are observed.
an observation frequency of 12 hours (43200 seconds) and an observation error variance o
a good place to start these experiments. Are some of the state variables more informative?
you relate this behavior to the attractor structure?

A final exploration of limiting information content can be taken by observing all three state v
ables, but only letting an observation impact the corresponding state variable. In other word
observations of state variable 1 (x) are only allowed to change state variable 1, etc. In the L
model, DART assigns the three state variables to equally spaced locations on a one-dimen
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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unit length periodic domain. Variable 1 (x) is at location 0.0, variable 2 at 1/3, and variable 3
3. There is no notion of physical location in this sense in the underlying dynamical system,
this allows DART features that are designed for models with the notion of a physical locatio
state variables to be used with L63. The namelist parameter ‘cutoff’ controls the weight wit
which observations at one physical location impact state variables at other physical locations
coefficient gives the half-width of a gaussian like envelope that multiplies the impact of an o
vation on a remote state variable (you can see the specifics of the localization in the code a
DART/cov_cutoff/cov_cutoff_mod.f90). So far, we have been using a very large value for cu
essentially allowing all observations to impact all state variables with full weight. If cutoff is
reduced to a very small value, say cutoff = 0.00001, observations will only impact state var
at the same location (the impact at remote state variables will be multiplied by a value very
to 0). Try changing ‘cutoff’ in the name list to this value and repeating the experiment in which
3 state variables are observed every 12 hours with observational error variance 1.0 (or try e
variance 4.0).

A final experiment with the L63 model examines the use of non-identity observation operato
this case, the DART system allows observations which are linear combinations of two of the
state variables to be constructed by again viewing the three state variables as being equally
on a periodic unit domain. So far, we have only defined identity observations with
create_obs_set_def, but it can also define observations that are linear interpolations to arb
locations on this unit domain. For instance, defining an observation at location 0.11111 will
erate a forward operator that is 2/3 x + 1/3 y since x is at position 0.0 and y at position 1/3.
Explore what happens when a single observation that is located ‘equidistant’ between two 
state variables is defined. For instance, create an observation set definition with
create_obs_set_def proceeding as when you designed the set with a single observation of
variable. When create_obs_set_def prompts:

Input an integer index if this is identity observation, else -1
Input a-1. Following this, the program will output:

Input location for this obs: value 0 to 1 or a negative number for
Uniformly distributed random location

Input the value 0.1666666, halfway between the locations of x and y. Finally, enter1 in response
to the query

input obs kind: u = 1, v = 2, ps = 3, t = 4
since the current DART version does not distinguish observation types for the L63 model. N
proceed to generate an observation sequence with create_obs_sequence and then try the
tion. You might also want to take a look at other combinations comparing error, etc.

V. The Lorenz 9-variable model (see Appendix II for model details)

This model a highly truncated primitive equation model. DART experimentation on the 9var
model can be done in the directory DART/models/9var/work. Here are found the same type
files as for the L63 model (see section II above) including input files for mkmf and initial con
tion files for the truth control run and 20-member ensemble assimilations in the files perfec
and filter_ics.
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As for the L63 model, a somewhat arbitrary assignment of 3600 seconds to the non-dimen
timestep prescribed in the 9var model has been made. Also, although again there is no notio
‘physical location’ for the 9 state variables, they have been arbitrarily assigned to have equ
spaced locations on a periodic [0, 1] domain with variable 1 (x1) at 0.0 and variable 9 (z3) at loca-
tion 8/9.

The initial condition files were generated in a fashion similar to those for the L63 model. First
true state initial condition was created by integrating the model for 10,000 1 day intervals fro
arbitrary initial condition (the slow dynamics of the 9var model has a considerably longer spi
period than for the L63 model with the arbitrary assignment of 3600 seconds to the underly
model timestep). Next, a 1000-member ensemble is generated by adding very small perturb
to this spun-up state and then integrating each ensemble member for 10,000 1 day interva
final states are in filter_ics. The truth is also integrated for this second 10,000 day interval an
final state is in perfect_ics.

An interesting assimilation problem for the 9-variable model can be constructed using iden
observations (there will be 9 observations in the set) with an observational error variance o
for each observation, and observations taken every hour (3600 seconds). Problems with th
assimilation are particularly apparent in the divergence state variables (1 through 3). Clear
some of the prior ensemble estimates are highly inconsistent with the truth (use the standa
lab tools you used with the L63 model to see the time series, bins, etc.).Try introducing eve
small amount of covariance inflation to try to deal with this bias problem (say cov_inflate = 
in the namelist). Explore what happens to the error, spread, and bins. Try even larger value
cov_inflate like 1.05; it is also interesting to try some covariance deflation, with cov_inflate=0

Another interesting sequence of experiments in the 9var model involves only observing one
of state variable, say only the vorticity, height, or divergence variables. Try setting up a seq
of 3 experiments in which only these components are observed (in each case the observat
will include 3 observations, the 3 wave components of height for instance). Set the observa
error variance to 1.0 for the height and vorticity fields but try something smaller, say 0.1 for
divergence which has a much smaller ‘climatological range’. Examine the performance of t
ter in all cases. It is especially interesting to see if one can get something to work when on
observing the divergence fields; why?

A number of additional optional experiments can be performed with the 9var model. Try va
the observation frequency or the observational error variance and observing the relative pe
mance of the assimilation. Try to find cases for which the high frequency ‘gravity waves’ tha
often plaque the assimilation are the worst. Consider some ways to try to deal with these ‘gr
waves’ which can seriously degrade an assimilation. One interesting experiment requires m
a modification to the 9var model code which can be found in the directory DART/models/9v
model_mod.f90. The subroutine comp_dt has a number of commented lines that allow ran
noise to be added to the time tendency computation for this model. Remove the comments
these lines, and recompile the filter program only (make sure that you don’t recompile the
perfect_model_obs program unless you want to have noise in the truth, too). Now try some a
ilations and observe what happens to the ‘gravity waves’, the error, etc., when noise is introd
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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in the assimilating model. You might want to vary the amplitude of the noise, also, which is s
1/10 of the amplitude of the time tendency in the default version of the code.

VI. The Lor enz-96 model (see Appendix II)

This 40-variable model has become one of the tools of choice for data assimilation techniq
researchers. It is one of the mainstays of DART and is also explored in Jenny Sun’s and Da
Barker’s exercise set on 4D-Variational assimilation.

The DART working directory for the L96 model is DART/models/lorenz_96/work where you w
find a set of files similar to that in the work directories for the L63 and 9var models. Initial c
tions for the truth integration and a 20-member ensemble can be found in the files perfect_ic
filter_ics. These were generated in a similar fashion to those for the L63 and 9var models. 
model was integrated from arbitrary initial conditions for 1000 1-day periods to produce a sta
the attractor. Small perturbations were then made around this state for each ensemble mem
each ensemble member and the true control were integrated for 1000 1-day intervals. The
model has had an arbitrary time interval of 3600 seconds assigned to its non-dimensional tim
for use in DART. The L96 variables have a well-defined physical location; in DART, they are
equally spaced on a unit periodic interval with variable 1 at 0.0 and variable 40 at location 3

The L96 model is big enough to examine a number of issues that arise in filters when the e
ble size is not significantly larger than the number of state variables. In particular, the impa
observations has to be localized for successful assimilations with a 20-member ensemble.
this, first create an observation set with 40 randomly located observations on the unit interva
input file for create_obs_set_def that generates such an observation set definition can be f
DART/models/lorenz_96/random_obs.input. In the work directory, enter

create_obs_set_def <../random_obs.input
to use this file as input to create_obs_set_def. Next, create an observation sequence defin
running create_obs_sequence with the default file set_def.out selected. Try a sequence wi
observation times each separated by 12 hours. For the first case, set the namelist paramete
lows:

&filter_nml
   ens_size = 20,
   cutoff = 1000000.0
   cov_inflate = 1.0,
   start_from_restart = .true.,
   output_restart = .true.
   obs_sequence_file_name = "obs_seq.out",
   restart_in_file_name = "filter_ics",
   restart_out_file_name = "filter_restart",
   init_time_days = 0,
   init_time_seconds = 0,
   output_state_ens_mean = .true.
   output_state_ens_spread = .true.
   num_output_ens_members = 20
   output_interval = 1
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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Use the standard matlab tools to examine the attractor of the model and the behavior of this
ilation. It is more challenging to get a feeling for the attractor behavior in higher order models
this. Can you see structures by looking at various triplets of state variables?

It should be apparent that the filter is diverging from the truth. Next, modify the cov_inflate in
namelist to 1.05 and see if this helps. Finally, try localizing the impact of the observations b
ting cutoff = 0.2 in the namelist while retaining the covariance inflation of 1.05. You may wan
try other values of inflation and cutoff to see how the behavior of the assimilation is affected
sure to try to understand how the correlations between state variables may be related to th
for localization. Use the matlab tools to study the spatial and temporal scales of correlation
between a given state variable and all others for the various cases.

Once you have gained an understanding of how covariance inflation and localization impac
formance in this model, you can compare filter results to some of the 4D-Variational results
obtained for the L96 model in exercises presented by Sun and Barker. Note that the versio
DART you are using here does NOT support observations that are not taken at model time
(i.e. observations must be on the hour for the model as configured here).

In the L63 and 9var model, a 20 member ensemble was larger than the number of state va
In the L96 model, this is not the case. It is interesting to explore the impacts of ensemble s
assimilation characteristics in this larger model (you might also want to go back to the sma
models and see if ensemble size matters at all; the filter_ics files in the base directory for L6
9var have 1000 ensemble members of initial conditions available so you can increase the e
bles up to 1000). The filter_ics file for the L96 model has 200 ensemble members available
increasing you ensemble size to 50, 100 and 200. In each case, explore the impacts of mo
the localization and covariance inflation parameters. Try to gain an understanding of the pe
mance enhancements available from increased ensemble size.

For those with lots of spare time, an additional interesting comparison is to look at the perfo
mance of the filter for the L96 model with 40 identity observations (each variable observed
exactly with error covariance 4.0) as opposed to the 40 randomly located variables in the c
done so far. To do this, you will need to create an observation set definition with the file
DART/models/lorenz_96/identity_obs.input used as standard input to create_obs_set_def a
then proceed as above.

VI. Dealing with big biases in models

The perfect model filter simulations that have been studied here neglect model error which i
of the biggest problems with real assimilation applications. To get a feeling for how easily m
error can become the dominant issue, you can do a very simple simulation of model error in
the DART models being used for the ASP colloquium. To do this, generate a true state and
vations using perfect_model_obs, a given model, and a given observation set. Then, use th
model’s namelist to change the model timestep. For instance, in the L63 model, the model
timestep is set to 0.01 by default. Try changin it to 0.095, 0.09 and 0.11 and observe the er
/home/jla/dart/asp_summer_col/documentation/dart_exercise_doc.fm July 15, 2003 3:31 pm
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characteristics of the filter. Try using covariance inflation to deal with this problem. How far 
the model error be increased while still having a covariance inflated filter that can generate
useful information? You can try this in the L96 model (or the bgrid model) if you have the incl
tion.

A number of interesting research directions could proceed from this study of systematic err
One could try to implement some of the ideas in Dick Dee’s talks about model and observa
error. For instance, the update in obs_increment could be changed to allow prior distributio
mates with tails longer than gaussians. Talk to Jeff if you’re interested in pursuing some of 
ideas.

VII. A non-deterministic filter (classical ENKF)

Peter Houtekamer’s talk on ensemble filters described the ‘classical’ ensemble Kalman filte
which uses a random number generator to generate a random sample of the observation d
tion. The basic filter implementation in DART is a determinstic filter which does not use any
dom numbers during its execution. You can compare these two methods if you want by mak
modification to the filter module. Edit your copy of DART/filter/filter.f90. Change the two
occurences of obs_increment in this file to obs_increment4. If you look in the assim_tools mo
in DART/assim_tools/assim_tools_mod.f90 you’ll be able to see the code for both of these 
routines. Delete the filter.o file in the working directory of whatever model you want to use (or
make clean) and then do

csh mkmf_filter; make
to get a filter that uses the stochastic filter. You can now compare your results for the differe
ters. Good places to do this are in the L63 model with observations that allow quite a bit of sp
in the assimilating ensemble and in the 9var model in cases where significant gravity wave a
tude occurs in the original deterministic filter results.

An examination of the obs_increment4 subroutine in the assim_tools module will reveal a se
of commented code near the bottom of the routine. This code performs a sort to guarantee th
observation increments are as small as possible (avoiding possible scrambling caused by t
stochatic algorithms generation of perturbed observations). Uncommenting this code and r
piling the filter program will allow you to examine the impact of this sorting.

VIII. P article filters

VIII. Estimation of model parameters

In addition to estimating values of model state variables, assimilation can also be used to ge
a Bayesian estimate of model parameters. In a filter, the easiest way to do this is to recast a
eter as an additional state variable; in general, the time tendency of the estimate of a param
zero. The DART L96 model could be modified to allow the single model parameter (which h
fixed value of 8.0 in the standard case) to be assimilated by a filter. This would require modif
the code to be a 41 variable model with the estimate of this parameter being added into the
This would be a non-trivial code modification, but could be completed in several hours if som
was interested.
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IX. Localized observations

Many assimilation algorithms can be challenged by having spatially inhomogeneous distribu
of observations. When some areas or variables are observed well but others are not, there
potential for numerical problems where some dimensions in a probability distribution are ve
tightly constrained compared to others. Ensemble filters generally handle this situation wel
although there are potentially grave problems with the use of covaraiance inflation in model
have some poorly observed quantities. Try designing a localized observation set in the L96 m
say only observing in one half or one quarter of the domain while leaving the rest unconstr
You should be able to see how ‘information’ is ‘created’ in the well-observed regions and th
propagates out of this region into the rest of the domain.

What are the problems with covariance inflation in cases like this? If time permits, a region
observation case in the bgrid dynamical core is also interesting. Observations could be confi
a quarter of the globe (say 1/2 of the northern hemisphere). Again, it is interesting to see ‘info
tion’ propagate in this system.

X. Assimilation results from a dry dynamical core (Appendix II.4)

The GFDL B-grid dynamical core can be run in a low resolution configuration on ocotillo no
and produce a roughly earth-like large-scale circulation. Filter assimilations can be carried 
the DART/models/bgrid_solo/work directory. You can begin by compiling the programs as for
low-order models using mkmf and make.

You can create observations sets and sequences as for the low-order models. However, th
also two additional programs that help to build observation sets: column_rand and ps_rand_
You can build these programs using mkmf and make. Column_rand builds a set of random
located column observations through an interactive interface. Be sure to specify 5 vertical l
The results is a file column_rand.out which can be used as standard input for create_obs_s
Ps_rand_local works in a similar fashion but builds a set of randomly located surface press
observations. These can be confined within a particular longitude-latitude rectangle if desir
file ps_rand.out which can be used as standard input for create_obs_set_def is created. No
the units for pressure in the model are Pascals and that error variances are input to the pro
An error variance of 10000.0 is equivalent to an error standard deviation of 1.0 millibars.

To get a feeling for the resources required to run the b-grid model, a suggested first run is 
lows. Try designing an observation set with 400 randomly located column observations with
error variance of 10000 and all other error variances 1.0. Then, build a sequence that obse
these column obsevations every 12 hours (43200 seconds) for a total of 5 days (10 observ
periods). Proceed to run perfect_model_obs using the perfect_ics file in the work directory.
try a 20 member ensemble assimilation with covariance inflation of 1.0 and localization of 0
(the units on the sphere are radians).
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The standard set of matlab analysis tools can be applied to b-grid model output. The script
plot_ens_err_spread plots diagnostics by variable and level for the bgrid model while all the
standard scripts work in the same fashion as for the low order models.

Because there is much more spatial structure to the b-grid state vector, it is convenient to ex
it using the simple NetCDF viewing tool ncview. Ncview can be applied directly to the
True_State.nc, Prior_Diag.nc and Posterior_Diag.nc files. In addition, the NCO tools can be
to extract portions of these files and compute differences for further analysis. To extract the
ensemble mean from a diagnostic file, use a command like:

ncrcat -d copy,10,10 Prior_Diag.nc Prior_Ens_Mean.nc
This extracts the 11th copy of the data (the ensemble mean is copy n+1 where n is the num
ensemble members output to the diagnostic file, ncrcat indexes from 0) from file Prior_Diag
and puts it in Prior_Ens_mean.nc. The command

ncdiff Prior_Ens_Mean.nc True_State.nc Prior_Err.nc
produces file Prior_Err.nc which contains the prior error.

ncdiff Posterior_Ens_Mean.nc Prior_Ens_Mean.nc Innovation.nc
produces a file containing the innovations if Posterior_Ens_Mean.nc is generated analogou
Prior_Ens_mean.nc. You can extract the ensemble spread by

ncrcat -d copy,11,11 Prior_Diag.nc Prior_Ens_Mean.nc
(the ensemble mean is copy n+2 where n is the number of ensemble members output to th
nostic file, ncrcat indexes from 0).

Those of you with time can think of a variety of experiments you might want to try with the b-g
model. Please be realistic about compute times (you are free to run long jobs overnight on oc
nodes if you want) and especially storage. For some longer runs you may want to think abo
modifying the frequency with which diagnostic output is generated using the namelist varia
output interval.

Appendix I: Summary of Generic Matlab Diagnostic Tools available

A set of matlab scripts/functions is available to do most basic diagnostics for DART ensem
assimilations. Most of these scripts are generic for all of the models used in the workshop an
located in the directory DART/matlab in the DART directory tree. All matlab scripts in this dir
tory will need to be copied (sftp’ed) to an appropriate work directory on a computing platfor
where matlab can be run. For the ASP summer colloquium, the most convenient place is to
a directory called matlab_scripts on your DEC/COMPAQ workstation home directory. Once
scripts are copied, executing matlab in this directory will allow you to analyze output from DA
experiments. The scripts expect to have NetCDF output files for the truth (generated by
perfect_model_obs) and for an ensemble assimilation (generated by filter) available, either
matlab_scripts directory or another directory which can be specified for matlab use.

For the ASP colloquium, we recommend you enter the command
matlab -nojvm

which presents a more stable interface to matlab. The startup.m script sets default values f
matlab variables truth_file and diagn_file. The truth_file is set to ‘True_State.nc’ in the work
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directory and the diagnostic file to ‘Prior_Diag.nc’ in the working directory. To change this, is
a matlab command like

diagn_file = ‘../my_dir/Posterior_Diag.nc’
It is most convenient to keep your matlab scripts and output NetCDF files in the same direc
Then, the only need for changing the default files will normally be to toggle between prior a
posterior diagnostics, i.e.

diagn_file = ‘Posterior_Diag.nc’

Eight basic diagnostic scripts are documented briefly below. On-line help for each can be obt
by typing (for instance);

help plot_bins
to a matlab window.

1. plot_bins
Plots rank order histograms (see Appendix V) for a set of state variables; the truth comes fro
truth_file and the ensembles from the diagn_file (see Matlab intro above). Ensemble size is
mined by the number of ensemble members available in the NetCDF diagnostic files output
the filter program (controlled via namelist parameter num_output_ens_members). For the L
and 9var models, plots are automatically produced for all (3, 9) state variables. For the L96 m
the default is to produce plots for state variables 1, 13, and 27, however, different state var
can be selected using the matlab script. This same script can be used to select a set of var
from the bgrid core model.

2. plot_correl
The user is queried for a given state variable and a time referred to as the base point. The fu
creates a space-time plot of the sample correlations with the base point from all other variab
all times in the NetCDF files. This function is not currently supported for the Bgrid model w
the large number of state variables precludes a meaningful display.

3. plot_ens_err_spread
Plots time series of the absolute error of the ensemble mean and the ensemble spread (sta
deviation) for a set of state variables. For L63 and 9var, plots are produced for all state var
For the L96 model, the default plot variables are 1, 13, and 27. Users can interactively spe
set of variables to be plotted for the L96 and Bgrid models. A summary statistic of the time
age of the errors and the spread is given.

4. plot_total_err
Plots a time series of the total error (the distance in the full phase space of the model) of th
ensemble mean from the truth and the ensemble spread.

5. plot_ens_mean_time_series
Plots a time series of the ensemble mean and the corresponding truth for a set of state var
For L63 and 9var, plots are produced for all state variables. For L96 and the bgrid core, var
are selected as for plot_bins.
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6. plot_ens_time_series
Plots time series of the set of available individual ensemble members, the ensemble mean a
truth for a set of state variables. For L63 and 9var, plots are produced for all state variables
L96 and the bgrid core, variables are selected as for plot_bins.

7. plot_var_var_correl
Plots a time series of the correlation between a single base state variable at a base time an
another state variable (could be the same one as the base variable) at all available times. T
slice across the plotted output from plot_correl.

8. plot_phase_space
Allows three-d visualization of time evolution on a three-dimensional slice through a model
phase space. Slices from several different time evolutions can be superposed in different c
For instance, a slice across variables 1, 2, and 3 from the truth for a 9var model integration
be superposed with the corresponding slice for the ensemble mean of an assimilation. The
face to plot_phase space requires specification of a number of matlab variables. Here, sam
specifications are provided along with discussion of what these variables do. Typing help
plot_phase_space in a matlab window also gives a detailed discussion.

fname = ‘True_State.nc’ #NetCDF file to get data from
var1 = 1 #var1, var2, and var3 select the three dimensional slice
var2 = 2 # through phase space for the plot
var3 = 3 # Additional tools are provided for selecting bgrid slices
ens_mem = ‘true_state’ # Selects which time series in the file is plotted

# Other possibilities are ‘ensemble mean’,
# ‘ensemble spread’, or ‘ensemble member?’
#where ? mark is the
# number of an individual ensemble member

ltype = ‘b-’ # Specifies the color and type of line plotted; see help pl
The help file also describes how to overlay two or more trajectories in phase space on the 
plot. Particularly revealing can be plots that overlay the truth with the ensemble mean, the 
with an individual ensemble member, the ensemble mean with an individual ensemble memb
two different ensemble members.

The resulting plots can be viewed using matlab’s three dimensional visualization tools whic
accessed by menus across the top of the plot. Ask for help to learn how to play with this if 
don’t know already.

Appendix II: Dynamical systems

1. Lorenz-63 Model

The first dynamical system examined with the methods described in section 2 is the 3

able convective model of Lorenz (1963), referred to here as the Lorenz-63 model, which ha
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become one of the mainstays for the study of chaotic systems (Palmer 1993, Pasmanter 1

The model’s 3 equations are:

(1)

(2)

(3)

where the dot represents a derivative with respect to time. The model is integrated using th

dard values for the parameters and r and the time step described in the original Lorenz

resulting in a system with chaotic dynamics.

2. Lorenz 9-variable model

The 9-variable model used here is a truncated version of the primitive equations (Lo

1980) used to study the behavior of gravity waves (Lorenz and Krishnamurthy 1987) and s

ensemble assimilation methodologies in Anderson and Anderson (1999). The model equat

are:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

where each equation is defined for cyclic permutations of the indices (i, j, k) over the values

3). The X, Y and z variables can be thought of as representing divergence, vorticity and he

respectively while the subscripts can be viewed as representing a zonal mean plus two wav

ponents for each of the three fields. Parameters are selected as in Lorenz (1980) in order t

ẋ σx– σy+=

ẏ xz– rx y–+=

ż xy bz–=

σ b,

Ẋi U jUk V jVk v0ai Xi Yi aizi+ +–+=

Yi
˙ U jYk YjVk Xi v0aiYi––+=

żi U j zk hk–( ) zj hj–( )Vk g0Xi K0aizi Fi+––+=

Ui bj xi cyi+–=

Vi bkxi– cyi–=

Xi ai xi–=

Yi ai yi–=
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duce a chaotic system. The timestep is set to 1/12 of a non-dimensional time unit; it is conve

to use timesteps as the unit of time throughout the remainder of this report.

There has been a great deal of discussion about the detailed structure of the attract

this model (existence, non-existence reference). For the purposes of this discussion, the m

important point is that long integrations of the model equilibrate to trajectories that have an

approximately balanced flow with most of the variation occurring on time scales of significa

greater than 100 steps. However, if even small ‘unbalanced’ perturbations are added to an

brated model state, a period of transient evolution occurs, characterized by ‘gravity waves’ 

periods of roughly 26 steps superposed on the underlying slow evolution. These gravity wav

most pronounced for the divergence variables where even small perturbations can lead to 

wave amplitudes that are large compared to the amplitude of the slower equilibrated dynam

however, for sufficiently large perturbations the impact of gravity waves also become appar

the vorticity variables and to a lesser extent the height variables.

Perfect model assimilation studies in this simple model isolate several interesting face

the performance of ensemble filter methodologies. The model’s interesting transient respon

‘off-attractor’ perturbations is a challenge to many simple assimilation methodologies. Meth

ogies that ignore prior constraints related to the local attractor structure will produce a large

ity wave response which may obscure the interesting slow evolution. Closely related is the 

that, once the assimilated states are off the attractor, the dynamics of the assimilated trajecto

statistically quite unique from those of the equilibrated control integration from which obser

tions are taken. In this way, experiments in the 9-variable model present one simple way to

ine the implications of model systematic error on ensemble filter assimilations.

Conveniently, the 9-variable model also removes several key challenges to filter ass

tions methodologies that could obscure investigation of the issues in the previous paragraph

even the smallest meaningful ensembles are larger than the number of state variables so i

related to degeneracy of estimates of the prior probability distributions are not relevant. Seco

is simple to constrain the state of the system with a small number of observations which ne

problems that develop in larger models in which many ‘remote’ observations that are not exp

to be closely related to a particular state variable can lead to noise that swamps the signal 

smaller set of more relevant observations. Finally, the model is small enough that a detaile

nosis of the behavior of all variables can be performed.
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Many data assimilation schemes, especially of older vintage, have required the applic

of an initialization scheme when applied to large primitive equation models. Initialization

schemes attempt to ‘balance’ arbitrary model states so that the slow dynamics is left uncha

while the amplitude of gravity waves is greatly reduced. An initialization procedure for the 9-v

able model was developed by and can be used to provide some analogy to the results of a

initialization schemes in more realistic models.

3. Lorenz-96 model

The Lorenz 96 model is a variable size low-order dynamical system used by Lorenz (1996)

more recently by others including Lorenz and Emanuel(1998). The model has N state varia

X1, X2, ..., XN and is governed by the equation

dXi / dt = (Xi+1 - Xi-2)Xi-1 - Xi + F

where i = 1, ..., N with cyclic indices. The results shown are for parameters with a sensitive d

dence on initial conditions: N = 40, F = 8.0, and a 4th-order Runge-Kutta timestep with dt=0.05

applied as in Lorenz and Emanuel.

4. GFDL B-grid dynamical core

This is the dynamical core of a full atmospheric GCM which is used by NOAA’s Geophysica

Fluid Dynamics Lab for its ‘operational’ climate prediction runs (with parameterizations includ

of course). You can run a low resolution (60 longitudes by 30 latitudes by 5 levels) version of

model on the ocotillo nodes in a reasonable amount of time. This version has baroclinic insta

and looks vaguely earth-like. Diagnostics and some assimilation results can be seen at ???

. Full documentation of the model can be found at:

 (http://www.gfdl.noaa.gov/~fms/havana/havana_public_manual.html).
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Appendix III: Ensemble filtering overview

The ensemble filter methods begin by integrating an ensemble of model states from

previous time at which data was assimilated forward in time until the next set of observatio

becomes available. For the results here, the prescribed observational error distributions are

pendent for each observation, so observations can be assimilated sequentially. Anderson (

demonstrates that for ensemble filters of the class used here, state variables can also be u

sequentially when an observation becomes available, so the update of a single state variab

single observation is described here without loss of generality.

Let h be the forward observation operator so thath(x) gives the expected value of the

observation given a state vector,x. An ensemble prior estimate of the observation is generated

applyingh to each prior ensemble state estimate in turn,

(8)

where N is the ensemble size, subscripts index ensemble member, and the superscript p in

a prior sample. Increments for the prior observation samples are generated by one of the tw

rithms below (EnKF or EAKF) so that

. (9)

Let  be a single scalar element of the state vector, . Then, updated values for the ens

sample of s are generated by linear regression onto the increments fory

(10)

where cov() is the prior sample covariance and var() is the prior sample variance from the e

ble.

The only difference between the EnKF and EAKF is the way in which the increment

the prior observation ensembles, , are computed. For the EAKF, the variance and mean

updated estimate ofy are computed as:

var(yu) = {var-1(yp) + var-1(obs)}-1 (11)

yu = var(yu){var-1(yp) yp + var-1(obs) yo} (12)

where var(obs) is the observational variance (a function of the observing system) of the sca

observation yo, and the overbar indicates an ensemble mean. The updated ensemble fory is com-

yi
p h xi

p( ) i, 1 … N, ,= =

yi
u yi

p ∆yi+=

si
p xi

p

si
u

si
p ∆si+ si

p
cov sp yp,( ) var yp( )⁄ i,+ 1 …N,= = =

∆yi
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puted by shifting the mean and compacting the prior distribution around the mean so that t

updated ensemble has exactly the mean and variance from (11) and (12),

. (13)

The perturbed observation EnKF uses a random number generator to create N sam

from the observational error distribution (given as a Gaussian with variance var(obs) here) 

creates a sample of the ‘observation distribution’ by adding these to the observation value,o.

Members of this ‘observation distribution’ are then paired with the prior estimate samples, yi, and

the updated values are computed as

(14)

where  is the ith sample of the ‘observation distribution’, and var(yu) is computed as in (11).

Implementations of the ensemble Kalman filters that exactly follow the algorithms ab

often suffer from filter divergence in which the observations receive progressively less weig

prior estimates of the state become increasingly overconfident. In some cases below, a cova

inflations factor,α with values slightly greater than 1 is applied to reduce the certainty of the p

estimates at each observation time by increasing the ensemble ‘spread’ of the prior

(15)

before applying the filter updates. Covariance inflation of this form is consistent with prior en

bles that have insufficient variance but no systematic error.

A closely related method for dealing with filter divergence modifies the weight given 

the prior relative to the observation in (12) as

yu = var(yu){ [βvar(yp)]-1 yp + var-1(obs) yo}. (16)

Values ofβ greater than 1 weight the observations more heavily in computing the updated m

without impacting the updated variance. This would be appropriate if prior state estimates h

appropriate variance but were biased so that the ensemble variance indicated too much con

in the estimate of the prior values.

Appendix IV: Measuring filter performance

A number of metrics are used to evaluate the performance of the ensemble filter ass

yi
u

yi
p

y
p

–( ) var zu( ) var zp( )⁄= z
u
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u

var yu( ) var
1– yp( )yi
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tions. The time-averaged RMS error of the ensemble mean and the time-averaged mean R

error of the ensemble members are the primary measure of assimilation error. In addition, 

ratio,Ra, of the time-averaged RMS error of the ensemble mean to the time-averaged mean

error of the ensemble members is computed (for the complete state vector and individual s

components). Murphy (1988, 1990) shows that the expected value of this ratio (referred to 

RMS ratio hereafter) is

(17)

for an ensemble in which the truth is statistically indistinguishable from a member of the ana

ensemble for an N-member ensemble. The ratio ofRa to the expected value for a given experi-

ment,

(18)

referred to as the normalized RMS ratio, is used here to evaluate ensemble performance a

Anderson (2001).

Rank histograms (also known as Talagrand diagrams) are also used to evaluate the

mance of assimilations for individual state variables. The order statistics of the analysis ense

of a scalar quantity are used to partition the real line inton+1 intervals (bins) at each analysis

time; the truth falls into one of thesen+1 bins. A necessary condition for the analysis ensemble

be a random sample of the distribution of the truth is that the distribution of the truth into then+1

bins be uniform (Anderson 1996). This is evaluated with a standard chi-square test applied

distribution of the truth in then+1 bins with the null hypothesis that truth and the analysis ense

ble are drawn from the same distribution.

Appendix V: Localization for ‘Distant’ Observations and Maintaining Prior Covariance

One of the advantages of the EAKF and EnKF is that they can maintain much of the p

covariance structure even when applied independently to small subsets of state variables. 

particularly important in applications where each state variable is updated independently fro

others. If, however, two state variables that are closely related in the prior distribution are

impacted by very different subsets of observations they may end up being too weakly relat

the updated distribution.

E Ra( ) N 1+( ) 2N⁄=

r Ra( ) E Ra( )⁄=
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One possible (expensive) solution, would be to let every state variable be impacted 

observations. This can, however, lead to another problem that has been noted for the EnKF.

a large number of observations that are expected to be physically unrelated to a particular 

variable, say because they are observations of physically remote quantities, some of these

vations will be highly correlated with the state variable by chance and will have an erroneou

impact on the updated ensemble. The impact of spuriously correlated remote observations c

up overwhelming more relevant observations (Hamill et al 2001).

Following Houtekamer and Mitchell (2001), one can multiply the covariances betwee

prior state variables and observation variables in the joint state space by a correlation func

with local support. The correlation function used is the same fifth-order piece wise rational 

tion presented for use in R3 by Gaspari and Cohn (1999, their equation 4.10) and used in

Houtekamer and Mitchell. This correlation function is characterized by a single parameter, c

is the half-width of the correlation function. The Schur product method used in Houtekamer

Mitchell can be easily computed in the single state variable cases presented here by simpl

plying the sample covariance between the single observation and single state variable by t

tance dependent factor from the fifth-order rational function.

Appendix VI: Namelist variables for DART modules

A list of the namelists for DART modules used for the ASP colloquium and the purpose of e

variable follow. The default value (the value used if the entry is not specified in the namelis

input.nml) of each quantity is listed in parentheses.

A. Program filter

1. async (false): Used if model is to be integrated by a separate process. True should n

selected for asp exercises (exceptions may exist for large models, check with Jeff).

2. ens_size (20): Size of ensemble to be used in filter.

3. cutoff (200.0): Half-width of localization function. Units depend on the location_mod t

is being used for the model used.

4. cov_inflate (1.0): Value of covariance inflation factor.
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5. start_from_restart (false): True if restart should be read from file. False if filter should

turb around single state. In either case, file specified by restart_in_file_name is read

6. output_restart (false): True if a restart file is to be output so that filter run could be exten

7. obs_sequence_file_name (‘obs_sequence’): File from which the input observation seq

file should be read to control the filter execution.

8. restart_in_file_name (‘filter_restart_in’): File from which a restart is read in if

start_from_restart is true. Otherwise, file from which to read a base state to be perturb

get initial ensemble.

9. restart_out_file_name (‘filter_restart_out’): File name for output restart file.

10. init_time_days (-1): If this value is negative, the initial time of the ensemble member

set to the time found in the restart file. If the value is not negative, then the initial time

the ensemble members is set to be (init_time_days, init_time_seconds). For idealize

model experiments, it is often convenient to reset the time to (0 days, 0 seconds) after

run of filter, thus allowing the same observation set to be used repeatedly.

11. init_time_seconds (-1): See init_time_days.

12. output_state_ens_mean (true): If true, the ensemble mean is output to the Prior_Dia

and Posterior_Diag.nc files.

13. output_state_ens_spread (true): If true, the ensemble spread is output to the Prior_D

and Posterior_Diag.nc files.

14. num_output_ens_members (0): The number of ensemble members to be output to 

Prior_Diag.nc and Posterior_Diag.nc files. If less that the ensemble size, the first

num_output_ens_members members are output.

15. output_interval (1): Specifies how often output is to be written to Prior_Diag.nc and

Posterior_Diag.nc. Units are assimilation periods (1 means output every time there 

observations, 2 means every other time there are observations, etc.).

B. Program perfect_model_obs

1. async (false): See filter.

2. obs_seq_in_file_name (obs_seq.in): File from which input observation sequence defi

that controls perfect_model_obs execution is to be read.
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3. obs_seq_out_file_name (obs_seq.out): File to which output observation sequence fil

be written.

4. start_from_restart (false): If true, initial condition is read from file specified by

restart_in_file_name. If false, model starts from model-specific arbitrary initial condit

5. output_restart (false): Output a restart file if true.

6. restart_in_file_name (‘perfect_restart_in’): File from which to read initial conditions.

7. restart_out_file_name (‘perfect_restart_out’): File to which to write restart.

8. init_time_days (-1): See filter.

9. init_time_seconds (-1): See filter.

10. output_interval (1): Frequency with which to write output to True_State.nc file. See fi

C. Module model_mod.f90 (Lorenz-63)

1. sigma (10.0): Model parameter.

2. r (28.0): Model parameter.

3. b (8/3) Model parameter.

4. deltat (0.01): Non-dimensional timestep for model. Associated time increment is alwa

3600 seconds.

5. output_state_vector (true): Chooses netcdf output format. False is not supported for Lo

63.

D. Module model_mod.f90 (9 variable model)

1. g (8.0): model parameter. Value of 9.9 gives a very different attractor structure.

2. deltat (1 / 12): Non-dimensional timestep for model. Associated time increment is alw

3600 seconds.

3. output_state_vector (true): Select whether to write single 9 element vector or triplet o

element vectors with specified types. False not currently supported.

E. Module model_mod.f90 (Lorenz-96)

1. model_size (40): Size of model state vector.

2. forcing (8.0): Model forcing parameter.
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3. output_state_vector (true): Chooses netcdf output format. False is not supported for Lo

96.

F. GFDL bgrid dynamical core:

Appendix VII: Extending idealized assimilation cases

More intensive exploration of assimilation problems may require extending assimilation run
doing runs that are long enough that they are conveniently split into several parts. In idealize
fect model cases, the most straightforward way to do this is to use the same observation seq
file repeatedly. After the first segment of an experiment (perfect_model_obs followed by filte
complete, the filter_restart and perfect_restart files can be copied to filter_ics and filter_res
the init_time_days and init_time_seconds namelist entries are set to 0 (see Appendix VI) for
perfect_model_obs and filter, a subsequent run of perfect_model_obs and filter will extend
previous segment. The True_State.nc, Prior_Diag.nc and Posterior_Diag.nc files will be ove
ten, so if you need a long series of diagnostics, you must rename these after each segmen
unique name. The sequence of True_State.nc files may be concatenated by using the NCO
mand ncrcat followed by the names of all the individual segment files and a destination file fo
concatenated series. For instance,

ncrcat True_State1.nc True_State2.nc True.nc
creates a file True.nc with the concatenated output (ignore the warnings from ncrcat about
increasing time index). The same can be done for the Prior_Diag.nc and Posterior_Diag.nc
the standard analysis tools can then be applied.

Table 1: Ocotillo node assignments

Team
mmm

Accounts
Members

Ocotillo
Slave node

1 mmm01
mmm02

node1

2 mmm03
mmm04

node2

3 mmm05
mmm06

node3

4 mmm07
mmm08

node4
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5 mmm09
mmm10

node5

6 mmm11
mmm12

node6

7 mmm13
mmm14

node7

8 mmm15
mmm16

node8

9 mmm17
mmm18

node9

10 mmm19
mmm20

node10

11 mmm21
mmm22

node1

12 mmm23
mmm24

node2

13 mmm25
mmm26

node3

14 mmm27
mmm28

node4

Table 1: Ocotillo node assignments
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mmm
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Ocotillo
Slave node
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