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ABSTRACT

A Bayesian fingerprinting methodology for assessing anthropogenic impacts on climate was developed. This
analysis considers the effect of increased CO2 on near-surface temperatures. A spatial CO2 fingerprint based on
control and forced model output from the National Center for Atmospheric Research Climate System Model
was developed. The Bayesian approach is distinguished by several new facets. First, the prior model for the
amplitude of the fingerprint is a mixture of two distributions: one reflects prior uncertainty in the anticipated
value of the amplitude under the hypothesis of ‘‘no climate change.’’ The second reflects behavior assuming
‘‘climate change forced by CO2.’’ Second, within the Bayesian framework, a new formulation of detection and
attribution analyses based on practical significance of impacts rather than traditional statistical significance was
presented. Third, since Bayesian analyses can be very sensitive to prior inputs, a robust Bayesian approach,
which investigates the ranges of posterior inferences as prior inputs are varied, was used. Following presentation
of numerical results that enforce the claim of changes in temperature patterns due to anthropogenic CO 2 forcing,
the article concludes with a comparative analysis for another CO2 fingerprint and selected discussion.

1. Introduction

Statistical analyses play a fundamental role in climate
change assessment (Barnett et al. 1999). Many of the
methods known as ‘‘fingerprinting’’ have strong roots
in classical statistical hypothesis testing and regression
analysis (e.g., Levine and Berliner 1999). An alternative
to the traditional statistical viewpoint is offered by the
Bayesian approach. To most easily illustrate the Bayes-
ian approach, we develop a Bayesian fingerprinting
analysis for near-surface temperature, restricted to the
impact of CO2 forcing only. Heuristically, the modeling
process formalizes the relation:

observations 5 g 3 a 1 noise, (1)

where a is an unknown parameter; g is a spatially vary-
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ing CO2 fingerprint; and ‘‘noise’’ is modeled to account
for both errors in the data and natural climate variability.

The observational dataset used here is a subset (1961–
98) of the Jones annual temperature observations (Jones
1994; Jones et al. 1999). We rely on model output from
the National Center for Atmospheric Research (NCAR)
Climate System Model (CSM; see Boville and Gent
1998; Meehl et al. 2000) in developing a statistical mod-
el. When appropriate, datasets were spatially interpo-
lated to the 58 3 58 Jones data grid. We used a 300-yr
CSM control run as a basis for estimating natural climate
variability. We used a 120-yr CO2 forced run in com-
bination with the control run in constructing a CO2 fin-
gerprint pattern g. Specifically, we computed differences
between temporal averages of the final 100 yr of the
forced CSM run and 100 yr of the control run at each
grid box. Figure 1 displays this fingerprint. (The double
use of the CSM control run in developing a fingerprint
and estimating climate variability may be of some con-
cern, though we judged that to be minor for our anal-
yses.) For comparison, we also present analyses based
on the CO2 fingerprint pattern of Santer et al. (1995).

The Bayesian viewpoint is characterized by two main
points: uncertainty modeling and learning from data. In
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FIG. 1. Fingerprint pattern developed from NCAR CSM control and CO2 runs on a 58 3 58 grid.

general, the uncertain quantities may be unobserved
physical variables, including future values as in fore-
casting problems, as well as unknown model parame-
ters. In this article, we consider only the latter setting:
our analysis will be for the unknown, amplitude a in-
troduced in (1). The formal mechanisms for achieving
the above two points are as follows.

1) All unknowns are treated as random variables and
endowed with a prior distribution. For our example,
the prior is denoted by p(a).

2) Learning is formally an application of Bayes’s the-
orem, which yields the posterior distribution:

p(a | data) } f (data | a)p(a), (2)

where f (data | a) is the conditional distribution of the
data given a.

This distribution, often known as the likelihood func-
tion, is typically formulated in conventional statistical
analyses as well. An intuitive interpretation of Bayes’s
theorem is that once the data have been observed, the
prior distribution is reweighted by the likelihood func-
tion to produce the posterior. General reviews can be
found in Berger (1985), Epstein (1985), and Bernardo
and Smith (1994).

Specific reasons for adopting the Bayesian approach
in climate change analysis include

R inability to adopt the fundamental practices associated
with traditional statistical cause–effect analysis, such

as controlled experiments comparing responses to
treatments;

R the need to account for various uncertainties in ob-
servational data and our knowledge of how the climate
system works;

R separation of investigation of the practical significance
of potential changes as opposed merely to consider-
ation of statistical significance.

Common approaches for dealing with the first item in-
volve the use of climate models and their responses to
various forcings or treatments. We followed suit in this
article, using CSM model output, though in general a
variety of prior elicitation approaches may be consid-
ered (Berger 1985; Bernardo and Smith 1994).

The second item is only partially dealt with here. Our
statistical modeling described in section 2 explicitly ad-
justs for (i) errors in the observational data, (ii) missing
data, and (iii) both spatial and temporal dependence
structures present in climate variability. There is some
evidence that observational uncertainties are negligible
in climate change analyses for global, annual near-sur-
face temperatures (Hegerl et al. 2000). Nevertheless, we
present an approach for adjusting for data errors here
because the method is simple and may be of interest in
climate change studies for other physical variables with
less reliable data. For most of this article, we focus on
uncertainty regarding the amplitude a. First, a prior dis-
tribution for a is developed. However, the resulting prior
is itself the object of uncertainty, and often a source of
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controversy. To address this problem, we develop robust
Bayesian analyses. The key is that rather than viewing
the prior as fixed and perfectly specified, we view our
prior information as specifying only a class of plausible
priors. The robust Bayesian approach considers the
ranges of posterior inferences as the prior varies over
the specified class.

Perspective for the third item is best provided via
comparison to non-Bayesian approaches. In the simpli-
fied framework considered here, traditional fingerprint-
ing involves applications of the triumvariate of classical
statistical methods: estimation, confidence intervals, and
testing for the amplitude a. Detection of climate change
is associated with rejection of the hypothesis that a 5
0 via classical statistical testing. However, such rejection
does not admit the interpretation that the event a 5 0
has small probability, nor does it imply anything re-
garding the chance that ‘‘a is near zero.’’ (Such state-
ments make no sense in the strict classical statistical
approach: a is not viewed as a random variable and
hence, cannot be the object of probability statements.)
Next, assuming a ‘‘detection,’’ standard approaches to
attribution are intended to provide statistical assess-
ments of the consistency of a with a value (or values)
of the parameter suggested by climate model responses
to hypothesized anthropogenic forcings. The idea is that
a forced, model-based estimate of a, say aM, is used as
the null hypothesis of another test. Attribution is then
associated with the failure to reject the hypothesis that
a 5 aM. Again, such a failure to reject does not imply
that the event ‘‘a is near aM’’ has high probability. Rath-
er, it means that the observed data are not surprising if
we assume that a 5 aM. Levine and Berliner (1999)
note that such an approach is not recognized as being
statistically valid even from the classical viewpoint.

The Bayesian’s treatment of parameters such as a as
random variables can lead to very different formulations
and interpretations of results. As opposed to the indirect
inferences associated with classical statistical testing,
Bayesian analyses can produce direct probability state-
ments to serve as bases for detection and attribution. In
particular, we define detection as occurring when the
posterior probability that a departs significantly from 0
is large. ‘‘Significance’’ here refers to practical signif-
icance, rather than statistical significance. Specifically,
for a specified neighborhood, say D of a 5 0, we have
a detection if the posterior probability of the event ‘‘a
is in D’’ is small. Similarly, for a specified neighbor-
hood, say A, of a 5 aM, we (essentially) define attri-
bution as occurring when the posterior probability that
‘‘a is in A’’ is large. (We say ‘‘essentially’’ here, because
we include another technical condition for attribution,
as clarified in section 3a.)

Forms of Bayesian analyses in climate change re-
search have been discussed in the literature. Some ex-
amples include Hasselmann (1998), Leroy (1998), and
Tol and de Vos (1998). However, these papers do not
provide complete views of the potential of the Bayesian

approach. Neither does this article, though we do pro-
vide substantial discussion of the flexibility of modeling
and forms of inference associated with the Bayesian
approach [also see Chiang et al. (1999, manuscript sub-
mitted to J. Climate)]. On the other hand, the scope of
the model used here is limited. We make no pretense
to describing a complete climate change analysis. We
use a variety of simplifying assumptions. Some were
chosen to enhance readability of the article; some were
chosen due to computational limitations. For example,
though we use a model for the space–time structure of
the noise process in (1), we did not adjust for our un-
certainty in that model. Inclusion of prior distributions
for features (e.g., natural variability covariance matrix)
of the distribution of the noise are mandated. Further,
we limit the form of signals to be purely spatial and a
to be constant in time. A natural generalization is to
allow for time-varying amplitudes and fingerprints (e.g.,
Hasselmann 1993; North and Stevens 1998; Santer et
al. 1995; Tett et al. 1999). In a Bayesian framework, a
collection of at would be endowed with a time series
prior developed for climate change analysis. Also, ex-
tensions to Bayesian multiattribute fingerprinting are
quite accessible (Hasselmann 1997; Hegerl et al. 1997).
Attention would focus on a vector, say a, whose di-
mension corresponds to the number of fingerprints used
in the model. The posterior distribution of a would pre-
sent us with dependence structures among the elements
of a, that would be of interest scientifically. We will
pursue these avenues elsewhere.

Next, anthropogenic climate change need not be re-
stricted to the study of signals. For example, we might
anticipate potential changes in climate variability. We
could use richer models and priors to enable consid-
eration of both signal and variability. More generally,
the probability distribution of climate may change form.
Other potential extensions are mentioned in section 5d.

In section 2 we describe development of a statistical
model for the data and a prior distribution for the pa-
rameter a particularly tailored for climate change anal-
ysis. Section 3 offers development of a variety of pos-
terior Bayesian inferences. These include formalizations
of our above notions of Bayesian detection and attri-
bution as well as the robust Bayesian approach. Nu-
merical results are presented in section 4. These results
support both detection of change and attribution of that
change to anthropogenic CO2 forcing. In section 5 we
present companion Bayesian results for the CO2 fin-
gerprint described in Santer et al. (1995) and some re-
marks and discussion.

2. Bayesian fingerprinting: Formulation

We discuss developments of the data model or like-
lihood function f (data | a) and prior p(a) in the next two
sections.
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a. Likelihood function: f (data | a)

The observational data used here are the familiar
Jones data (Jones 1994), consisting of monthly tem-
perature observations on a 58 3 58 grid; we only use
data for the period 1961–98. Our analyses are for yearly
averages of these data. The Jones grid leads to n 5 36
3 72 5 2592 spatial grid points. Some data are missing.
Our analysis uses only actual data, that is, we do not
impute any missing observations.

Let T t represent the n vector of ‘‘true’’ annual, grid-
ded temperature anomalies in year t, t 5 1, . . . , m. (We
perform analyses for four different choices of m.) We
assume that these anomalies represent departures from
a baseline compatible with that chosen in preparation
of the Jones data; namely, the mean of temperatures
over the 30-yr period 1961–90. (In general, definitions
of baselines appropriate for climate change studies are
very important in the interpretation of results.) Let T
5 ( , . . . , )9 be the m · n vector collecting temper-T9 T91 m

ature anomalies over the entire period where 9 denotes
transpose. Define vectors of observations Y1, . . . , Ym,
where Y t represents ‘‘observed’’ annual temperatures in
year t 5 1, . . . , m. These vectors may be of various
lengths, say n t, due to missing data. Let Y 5
( , . . . , )9 be the collection of these vectors.Y9 Y91 m

Our data model includes a formal adjustment for er-
rors present in the observations. We assume that these
errors all have mean zero, are independent from year to
year, and have normal (Gaussian) distributions. To keep
track of missing data, for each year define nt 3 n in-
cidence matrices Xt, consisting of rows of zeroes, except
for a single 1, indicating locations of the observations.
This is summarized for each year as

Yt | Tt, Dt ; N(XtTt, Dt), (3)

where Dt is an nt 3 nt covariance matrix. Alternatively,
we can represent the model for all observations as

Y | T, D ; N(XT, D), (4)

where X is a block diagonal matrix with blocks Xt and
D is a block diagonal matrix with blocks Dt. [For com-
pleteness, note that the dimensions of X are nt 3mSt51

(n · m); the dimensions of D are nt 3 nt.]m mS St51 t51

The second stage of our model considers natural cli-
mate variability and the spatial fingerprint. In particular
we assume that each year t 5 1, . . . , m

Tt | a, g, S ; N(ga, Ss), (5)

where Ss is an n 3 n spatial covariance matrix; g is an
n vector denoting the fingerprint. Note that, as in the
fingerprint work of Hasselmann (1997) and the refer-
ences therein, we assume that the fingerprint pattern is
constant over time. Under this model, a standard prob-
ability calculation implies that unconditional on T,

Y | a, g, D, S ; N(XGa, D 1 XSX9), (6)

where G is an m · n vector of m replicates of g. The

matrix S is an n · m 3 n · m space–time covariance
matrix developed to represent both the spatial depen-
dence reflected in Ss and temporal dependence. We as-
sume that S is space–time separable as described in
appendix A [see North and Wu (1999, manuscript sub-
mitted to J. Climate) and Cressie and Huang (1999) for
potential avenues to relaxing this assumption].

A fully Bayesian analysis would involve formulation
of prior probability models for the quantities a, D, S,
and perhaps g. In view of the high dimensionality of
the problem, this is a daunting task. For purposes of
illustration, we follow simpler strategies of (i) formu-
lating plausible estimates of D and S, and (ii) selecting
fixed fingerprints. We focus on modeling and inference
for the amplitude a here and describe our estimation of
D and S in appendix A.

Both Bayesian and traditional approaches to statistical
inference benefit from application of the so-called suf-
ficiency principle (Berger 1985, 126–127; Epstein 1985,
23–25). The idea is to construct functions of the data
that summarize all the statistical information contained
in the data regarding the unknown parameters. It turns
out that for the model (6) a sufficient statistic for a is
the generalized least squares estimator (GLS), denoted
by â(Y) (e.g., Graybill 1976; Levine and Berliner 1999).
This estimator is given by

21H9V Y
â(Y) 5 , (7)

21H9V H

where

H 5 XG and V 5 D 1 XSX9.

The quantity â(Y) in (7) is often known as the optimal
filter in the climate science literature, though it should
be clarified that it is optimal under a mean squared error
criterion, and then only within the class of estimators
that are both unbiased and linear in the data vector Y.
It is also familiar as the most probable value of a, though
this Bayesian-like interpretation is founded on a so-
called ‘‘uniform prior’’ assumption; we do not use uni-
form priors in this article.

A further result from statistics (Graybill 1976) implies
that

â(Y) | a ; N(a, s 2), (8)

where

s 2 5 (H9V21H)21. (9)

In summary, we base our Bayesian inferences about a
only on (8) and our prior on a. For potential extensions
to multiattribute studies, we remark that computations
and results for a multivariate GLS sufficient statistic for
a vector of amplitudes are readily available (Graybill
1976).

b. Prior: p (a)

The issues of climate change motivate construction
of the prior p(a) as a mixture of two main components
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as follows: with probability p, a has a normal distri-
bution with mean 0 and variance t 2, and with proba-
bility 1 2 p, a has a normal distribution with mean mA

and variance . Symbolically, we write2t A

p(a) 5 pn(0, t 2) 1 (1 2 p)n(mA, ),2t A (10)

where n( · , · ) represents the probability density func-
tion for a normal distribution; the first argument is the
mean and the second is the variance.

In specifying the prior parameters, note that we
should think of a and g as coming in pairs. That is, our
prior views concerning the actual values of a depend
on the choice of g. The first component of (10) is to
model information about a under the qualitative state-
ment that anthropogenic CO2 forcing has not impacted
global temperatures, at least not in a fashion reflected
by the fingerprint g. The selection of zero as the prior
mean of a in this component of the prior seems quite
natural. The variance t 2 is interpreted as the variability,
arising naturally, we anticipate in fitting a by projecting
temperature fields onto the selected fingerprint g. The
probability p is then a quantification of the degree of
belief in the hypothesis of no anthropogenic impacts.

The second component of the prior represents an im-
plied distribution on a assuming significant anthropo-
genic effects representable as changes in temperature
patterns along the fingerprint g. The quantity mA is the
hypothesized shift in a, which in turn translates to shifts
in temperature anomalies ga. The variance reflects2t A

anticipated variability in a under CO2 forcing. This pa-
rameter reflects, in part, natural climate variability,
though there is no requirement that 5 t 2.2t A

Note that the hypotheses here are modeled as distri-
butions rather than as single points (i.e., either a 5 0
or a 5 aA, exactly). This is in contrast to the simplified
prior used in Hasselmann (1998), which is essentially
(10) with both t 2 and set equal to zero, and thus2t A

ignores a significant source of uncertainty.
The variation represented by t 2 would be best esti-

mated through (unavailable) replications of the climate
system under a no CO2 forcing scenario. As a surrogate,
we use CSM control run output. A single 300-yr series
was partitioned into 100 batches of equal time duration,
each representing ‘‘replications’’ of an unforced, sur-
rogate global climate system over short time periods.
The batches are overlapping in that they are constructed
by taking a running window of 200 yr. For each batch
and our CSM fingerprint pattern g, we computed gen-
eralized least squares estimates of a as if the batched
data were real observations. That is, in each case, we
assumed a model like (6) but with model output playing
the role of the data Y and no measurement error co-
variance matrix D. The sample standard deviation
(0.007) of the resulting 100 estimates then provides a
plausible first guess at the variance t . However, since
the results batching process of the NCAR CSM runs
would vary with sample size, number of batches, and

so on, as well as with different CSM runs, we actually
use a somewhat larger value t 5 0.02.

Prior parameters under CO2 forcing were computed
analogously to the previous discussion but using batches
of the CSM CO2 forced output. We used the sample
mean of the batched results to estimate the prior mean,
mA. The sample variance provides a guess for , though2t A

we again used a slightly larger value since we are merely
sampling from a particular CSM run.

3. Posterior inferences

For a prior of the mixture form (10), the posterior
distribution is also a mixture (e.g., Berger 1985, 127–
128, p. 206). We have

p (a | â) 5 p(â)n[m(a | â), t 2(a | â)]

1 [1 2 p(â)]n[mA(a | â), (a | â)],2tA (11)

where
2 2 2t t s

2m(a | â) 5 â and t (a | â) 5 , (12)
2 2 2 2t 1 s t 1 s

2 2t sA
m (a | â) 5 â 1 m andA A2 2 2 2t 1 s t 1 sA A

2 2t sA2t (a | â) 5 . (13)A 2 2t 1 sA

and

2 21 2 p t 1 s
p(â) 5 1 1

2 27 1 2!p t 1 sA

21
2 21 (â 2 m ) âA

3 exp 2 2 . (14)
2 2 2 25 68[ ]2 t 1 s t 1 sA

This distribution is a mixture of the two posteriors
corresponding to each of the two components of the
prior (10). The mixing weight p(â) is a function of the
observed data. It is important to note that p(â) is not
necessarily interpretable as the posterior probability that
the no-change prior distribution is correct. Rather, it is
a weight associated with the corresponding posterior
distribution. Indeed, depending on the data, either one
or both of the components of the posterior distribution
(11) may be very different from their corresponding
priors.

a. Detection and attribution

We next formalize the specialized inspections of the
posterior distribution intended to serve as Bayesian pro-
cedures for detection and attribution. One motivation is
to offer quantitative measures of direct ‘‘practical sig-
nificance’’ of results as opposed to restriction to indirect
‘‘statistical significance.’’ We define ‘‘no significant cli-
mate change’’ to be the event that a ∈ D, where D is
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some neighborhood of zero and ∈ is read as ‘‘is an
element of.’’ Similarly, define another set, A, a neigh-
borhood of the mean mA to represent an attribution set
reflecting a considered to be plausible in relation to the
physics of CO2 impacts on climate as reflected in the
CSM model (in our case). Recall that the physical mean-
ings of a and g are paired through their product. Hence,
the sets D and A may vary with g.

With these definitions, we can use the Bayesian model
for inferences regarding detection and attribution. The
notions are intuitive:

R Define detection as occurring when the posterior prob-
ability that a departs significantly from 0 is large;
namely, if

Pr(a ∈ D | â) is small. (15)

R Define attribution as occurring when both (i) the pos-
terior probability

Pr(a ∈ A | â) is large, (16)

and (ii) 1 2 p(â) is large.

The two requirements in the above statement of at-
tribution need not be redundant. Consider the following
example (the numbers are completely artificial, chosen
for ready illustration). Suppose that â | a ; N(a, 1) [see
(8)]. The prior parameters chosen are p 5 0.5, t 2 5 1,
mA 5 5, and 5 25. The observed value of â is 25.2t A

Computing (14), we obtain p(â) 5 0.045, apparently
suggesting that this data offers strong evidence for the
anthropogenically forced climate change model. Intui-
tively, this suggestion seems silly. The observed â 5
25 is actually closer to the center, 0, of the no-change
prior distribution, than to the center, 5, of the forced
prior distribution. However, in a sense, it is true that
the forced model offers a better explanation of the data
than does the no-change model. The key is the highly
different values of the prior variances. Specifically, â is
five standard deviations (under the no-change compo-
nent of the prior) away from 0, but only two standard
deviations away from 5 under the forced alternative
component. That is, neither alternative offers a good
explanation of this data, though in comparing only the
two candidates, the forced model is far superior.

Two points should be clarified. First, the above be-
havior of p(â) could not occur if t 2 5 . However, our2t A

analyses below do suggest that for our setting we an-
ticipate that t 2 , , so this discussion is important.2t A

The second, more critical point is that sole reliance on
too simple a summary of the posterior can be mislead-
ing, though the full posterior is well behaved. Com-
puting the actual posterior (11) for our example yields:

p(a | â 5 25) 5 0.045n(22.5, 0.5)

1 0.995n(24.615, 0.96). (17)

This posterior is indeed far from either of the two com-
ponents of the prior; the data have overwhelmed both

of them. If we defined the negligible impact region D

to be the neighborhood (20.5, 0.5), we have Pr(a ∈
D | â 5 25) 5 0.000 14. That is, we have a detection
(of something); there is strong evidence of significant
departure (as expressed in D) from the no-change hy-
pothesis. On the other hand, if we define attribution
regions A to be even very large neighborhoods of mA

5 5 [e.g., (2, 8)], we have Pr(a ∈ A | â 5 25) 5 0.0.
That is, we find no evidence for attribution, despite the
high posterior probability 0.955 on the forced alternative
posterior model.

These examples, suggesting the potential need for
care and inspection of the full posterior rather than sim-
ple summaries, may cause some readers to wonder if it
might be easier to rely on non-Bayesian approaches. We
think not, for a variety of reasons outlined in this article.
Further, traditional testing is not immune to unintuitive
results, but rather also requires care in interpretations.
See Berger (1985) and Levine and Berliner (1999, p.
573) for examples.

Two important questions arise. First, who is to quan-
tify what ‘‘small’’ and ‘‘large’’ mean in our definitions
of detection and attribution? Second, who is to define
the sets D and A? Note that analogs of the first question
also arise in non-Bayesian detection and attribution
studies. Namely, who is to decide on cutoffs of achieved
statistical significance (in the case of detection) and lack
of statistical significance (in the case of attribution)?
Regarding the specification of D and A, some might
suggest that such specifications are separate from the
science of climate change. Even if that is true, we at
least provide descriptions of tools for quantitative as-
sessments of the practical impacts of human influences.

Our proposition of detection and attribution analyses
are different from conventional, two-step approaches.
This is primarily due to the points of the previous par-
agraph. The Bayesian framework is not limited to sim-
ply computing direct analogs of classical procedures.
For example, Hasselmann (1998) wrote ‘‘. . . it is not
possible in the Bayesian approach to separate formally
between detection and attribution.’’ We disagree, and
offered such a separation.

b. Classes of priors

The prior (10) assumes that mA, t 2, and are known2t A

quantities. In reality, we would be uncertain about these
parameters. (This also is true for p; one could seldom
argue that p should be 0.7253, but not 0.73. However,
study of the impact of varying p is quite easy.) In the
Bayesian paradigm, a hierarchical view, in which prior
distributions for these quantities are incorporated into
the analysis, could be adopted. An alternative is the
robust Bayesian viewpoint. The idea is that our infor-
mation seldom is refined enough to identify a single
prior distribution. Rather, our prior information specifies
a class of priors, denoted by G. We then study ranges
of posterior measures (probabilities, estimates, etc.) as
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TABLE 1. For each of the four time periods a–d: GLS estimate â of a and associated standard deviation s ; mean and associated standard
deviation of a under the first component (no climate change) of the posterior mixture in (11); posterior mean and associated standard deviation
under the second component (CO2 forcing) of the posterior mixture in (11); posterior weight , p(â), assuming prior weight p 5 0.5, t 5
0.02, mA 5 0.17, and t A 5 0.05.

Time period 1961–98 1970–98 1980–98 1988–98

â, s
m(a | â), t(a | â)
mA(a | â), t A(a | â)
p(â)

0.059
0.027
0.077

0.022
0.015
0.020
0.671

0.093
0.036
0.108

0.025
0.016
0.022
0.062

0.160
0.047
0.164

0.031
0.017
0.026
0.0001

0.220
0.042
0.200

0.041
0.018
0.032
0.00001

the prior varies over G. See Berger (1985, chapter 4)
for overviews and examples of both the hierarchical and
robust Bayesian viewpoints. Those descriptions include
more general classes of priors (relaxation of reliance on
Gaussian priors, etc.) and analyses.

As in (10), consider priors of the form p(a) 5
pn(0, t 2) 1 (1 2 p)n(mA, ). For ease in conveying2t A

the idea, we assume that t 2 is fixed, but we have sub-
stantial uncertainty in mA and . Similar calculations2t A

without this imposition are quite accessible, but our pre-
liminary analyses for formulating estimates of the prior
parameters suggest that this simplification is reasonable.

Define a collection of priors:

G 5 {p(a) : ml # mA # mu; t l # t A # t u}, (18)

for specified bounds ml , mu and t l , t u. One example
of a robust Bayesian calculation is to find the range of
p(â) as the prior varies. During these calculations, â, p,
s 2, and t 2 are fixed. Hence, from (14) we see that the
maximum of p(â) is of the form

21
1 2 p

p(â) 5 1 1 M(â) , (19)1 2[ ]p

and the minimum is of the form
21

1 2 p
p(â) 5 1 1 m(â) , (20)1 2[ ]p

where the values M(â) and m(â) are to be determined.
The mathematics for these optimizations are outlined in
appendix B. The results have a useful interpretation in
terms of odds ratios. The quantity (1 2 p)/p is the prior
odds in favor of the anthropogenically forced compo-
nent of the distribution of a. The values M(â) and m(â)
are extremal values of the corresponding odds as re-
flected by the data. The products of these values and
the prior odds are extremals of posterior odds ratios.
We return to this interpretation when presenting nu-
merical results in the next section.

Computing bounds for Pr(a ∈ D | â) and Pr(a ∈ A | â)
are more complicated than those for p(â). However,
these bounds are easily found using simple numerical
optimization methods.

4. Results

We present posterior inferences using four subsets of
the Jones data corresponding to the time periods: (a)

1961–98; (b) 1970–98; (c) 1980–98; (d) 1988–98. The
year 1961 was chosen as the initial time point since the
baseline from which the Jones data anomalies are com-
puted begins in 1961. These successively shorter time
periods are suggested since climate change trends are
anticipated to be increasingly more visible during the
latter part of the twentieth century. It should be noted
that this reasoning suggests that we should use different
priors for a depending on the time period analyzed. For
simplicity, we do not do so here.

Table 1 presents the generalized least squares esti-
mates â of a defined in (7) and the associated standard
deviations s computed from (9) for each of the four
time periods considered. Note that, as anticipated above,
these estimates grow when computed for time windows
increasingly focused on the recent past.

a. Basic analysis

Our prior parameter estimates, resulting from the
‘‘batching’’ of CSM output described earlier, are t 5
0.02, mA 5 0.17, and t A 5 0.05. (We actually inflated
standard deviations obtained from those model data
analyses a bit.) For these prior parameter values and
each of the four time periods, Table 1 presents the
means and standard deviations [see (12) and (13)] for
the two components of the posterior distribution (11).
Table 1 also includes the posterior weight p(â) [see
(14)] on the no change posterior model, assuming the
prior weight p 5 0.5. Figure 2 displays the prior and
posterior distributions of a for p 5 0.5. The plots also
display the likelihood functions derived from (8). Note
that the posterior distributions are bimodal for time
periods a and b, but not time periods c and d. The
bimodality is a consequence of the mixing of the two
components in the posterior distribution (11). In the
latter two time periods, the posterior mixture proba-
bility p(â) is essentially zero. Thus the posterior dis-
tribution in these time periods is solely the component
of the posterior distribution under CO 2 forcing. These
results generally suggest that the data most resemble
the component of the posterior distributions of a cor-
responding to anthropogenic forcing; this behavior
seems overwhelming for the most recent time periods.

Figure 3 displays the probability p(â) of the ‘‘no
change’’ component of the posterior model, as a func-
tion of the prior probability p. These probabilities are
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FIG. 2. Likelihood function, prior distribution, and posterior distribution of a using our NCAR CSM fingerprint. For each of the time
periods (a)–(d): (left) the likelihood (dotted line) and prior distribution components [anthropogenic CO 2 forcing (solid line); no anthropogenic
impacts (dashed line)], and (right) the posterior mixture distribution (11).

of course related. For example, the more confident one
is in the hypothesis of ‘‘no climate change,’’ the more
difficult it is for data to sway that opinion. The posterior
probability p(â) is of moderate size for time period a.
In fact, for p 5 0.5, p(â) is about 0.70, providing more
weight for the no change component of the posterior
distribution. For time period b, the posterior probabil-
ities p(â) lie well below 0.5 for most of the range of p,
thus placing substantial weight on the ‘‘anthropogenic
forcing’’ component of the posterior distribution. We
have not included corresponding plots for the remaining
time periods c and d. The evidence from these periods
is so overwhelmingly supportive of the forced model
that p(â) (and its upper bound) is essentially zero unless
p is absurdly large (0.99 or so).

b. Detection and attribution results

Figures 4 and 5 present the posterior probabilities of
detection and attribution regions, Pr(a ∈ D | â) and Pr(a
∈ A | â), respectively, as functions of p, for the time
periods a and b. We selected D 5 [0 2 0.05, 0 1 0.05]
and A 5 [mA 2 0.05, mA 1 0.05]. Figure 4 shows
moderate probabilities of the detection region across the
range of p for time period a suggesting little or no ev-
idence of a detected signal. In fact, when p 5 0.5, Pr(a
∈ D | â) is about 0.6. For the same data, Fig. 5 displays
small posterior probabilities of the attribution region
across the range of p. However, there is some suggestion
of a detected change based on time period b in that Pr(a
∈ D | â) , 0.5 for most of the range of p. However,
since the corresponding posterior probability Pr(a ∈
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FIG. 3. Posterior mixture probability p(â) versus the prior mixture
probability p based on two data subsets: (top) 1961–98 and (bottom)
1970–98. The solid line in each denotes the posterior probability
computed from the data. The dotted lines denote the upper and lower
bounds on the posterior probabilities from the robust Bayesian anal-
ysis.

FIG. 4. Posterior probability Pr(a ∈ [20.05, 0.05] | â) as a function
of the prior probability p based on two time periods: (top) 1961–98
and (bottom) 1970–98. The solid lines in each denotes the posterior
probabilities for the primary prior. The dotted lines give the upper
and lower bounds on these probabilities from the robust Bayesian
analysis.

FIG. 5. Posterior probability Pr(a ∈ [mA 2 0.05, mA 1 0.05] | â) as
a function of the prior probability p based on two time periods: (top)
1961–98 and (bottom) 1970–98. The solid lines in each denotes the
posterior probabilities for the data. The dotted lines give the upper
and lower bounds on these probabilities from the robust Bayesian
analysis.

A | â) is on the order of 0.3–0.4 across the range of p,
there is little evidence for attribution to the CO2 forcing
represented in our CSM-based fingerprint. These mod-
erate values may be expected after examining Fig. 2. In
that figure, the likelihood function lies in between the
two components of the prior mixture and the two com-
ponents of the posterior distribution overlap signifi-
cantly, particularly for time period a.

For time periods c and d, the data strongly support
the CO2 forcing model. In particular, the posterior prob-
abilities Pr(a ∈ D | â) are essentially zero (less than 6
3 1023 for c; less than 1026 for d) for reasonable prior
probabilities p. The posterior probabilities Pr(a ∈ A | â)
are constant across the range of p with values 0.92 (pe-
riod c) and 0.73 (period d). We thus do not include these
probabilities for time periods c and d in Figs. 4 and 5.
The constant values arise because the posterior weights
1 2 p(â) on the forced posterior component is essen-
tially one for all p. (We explain the apparent decrease
in this probability based on period d below.)

c. Robust Bayesian results

To illustrate robust Bayesian results for a plausible
class of priors, we specified G based on the ranges mA

∈ [0.15, 0.19] and t A ∈ [0.05, 0.07] (recall that our
baseline prior had mA 5 0.17, t A 5 0.05).

Table 2 displays the computed values of M(â) and
m(â) needed to find the extrema of p(â) described in
(19) and (20). These extrema are plotted as functions
of p for the first two time periods in Fig. 3. For time
period b, the results are quite strong. For example, we
have that for p 5 0.5, 0.041 # p(â) # 0.104; even for
the large value p 5 0.75, 0.115 # p(â) # 0.258.

For the two later time periods c and d the very strong
evidence against the no change hypothesis remains even
over this class of priors. The values of m and M for
these time periods are overwhelmingly supportive of
the CO2 forced distribution. The posterior probability
of the no change model is essentially zero (to three
decimal points) over the entire class for the third data
subset, unless one has an absurdly high prior odds on
the no change model. For example, one would need a
prior odds in favor of no change to about 6300-to-1 to
be indifferent on the hypotheses; that is, for the posterior
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TABLE 2. Upper and lower bounds on data-based contributions to the odds ratio in favor of the CO 2 forced posterior model for each of
the four data subsets.

1961–98

m M

1970–98

m M

1980–98

m M

1988–98

m M

1.3339 0.2174 23.1546 8.6383 8776 6283.24 71 150 43 524

range on p(â) to include 0.5. The results for the last
data subset are even more extreme. However, we do not
claim that based on the fourth time period, we have
proven that starting with an indifferent prior (p 5 0.5),
the odds in favor of the CO2 forced model are at least
43 524-to-1. Such extreme odds and corresponding
probabilities are computed as tail events of the Gaussian
distributions assumed in this article. While these Gaus-
sian distributions appear plausible, they can imply prob-
abilities of tail events that are subject to round-off error
and are not testable or believable. Further, these prob-
abilities are based on all the other assumptions made
concerning other parameter specifications. Hence, while
we find these results compelling, the actual values ob-
tained should not be considered exact when they are too
extreme to be experienced. However, rounding off
43 524-to-1 to 1000-to-1 or even 100-to-1 remains of
serious interest.

Figures 4 and 5 present the upper and lower bounds
on the detection and attribution probabilities, Pr(a ∈
[20.05, 0.05] | â) and Pr(a ∈ [mA 2 0.05, mA 1 0.05] | â),
respectively for time periods a and b. Notice that the
ranges for the probability of the detection region are
tight for each of the two time periods. Though not dis-
played here, the latter two time periods c and d show
similar behavior with probability ranges bounded very
close to zero. This suggests that our interpretation of
these posterior probabilities is ‘‘robust’’ with respect to
priors varying within G. Our conclusion is that there is
very strong evidence of a detected signal based on the
last three time periods.

The attribution region probabilities are also robust
over G. Based on time period a, the posterior probabil-
ities of A lie within a range of zero to 0.3, suggesting
no ability to attribute a climate change signal to an-
thropogenic forcing. For time period b, the attribution
probabilities may fall slightly above 0.5 depending on
prior parameter specification on G. The range over
which the posterior probability of A may fall is tight
for periods c and d as well, being (0.8, 0.92) and
(0.45, 0.95) respectively. These ranges are constant
across p and are thus not shown in Fig. 5. Hence our
conclusion that the data most resemble the component
of the posterior distribution corresponding to anthro-
pogenic forcing is reasonable over this range of prior
distributions. The larger range, (0.45, 0.95), on the last
time period is a consequence of the large estimated sig-
nal, â 5 0.22, actually being greater than the upper
bound on mA used to define G. Since these data do in-
tuitively support strong projection onto our fingerprint,

we still consider this good evidence for attribution. In
fact, had both our range for mA been more conservative
and our definition of A been larger to include large a,
the resulting probabilities of A would be much greater.
(Recall that such increases are actually in accord with
our prior beliefs, though we did not vary the prior on
a with the time period considered.)

5. Discussion

a. An alternate fingerprint

We performed an analogous analysis using the CO2

fingerprint (see Fig. 6) developed in Santer et al. (1995).
This fingerprint uses the GRANTOUR/CCM1 experi-
mental configuration (Taylor and Penner 1994). Table
3 presents the GLS estimates â of a and associated
standard deviations s for the time periods a–d. Note
that these results are similar to those based on our CSM
fingerprint, except that the estimated amplitudes for the
Santer et al. fingerprint are consistently smaller. How-
ever, recall our earlier alert that amplitudes and finger-
prints should be viewed as arising in pairs. This means
that we should redefine our basic prior, class of priors,
and detection and attribution regions for use in analyz-
ing the Santer et al. fingerprint. One option is to repeat
the batching ideas used earlier. A second option is to
view the adjustments needed as a problem of standard-
ization to place each fingerprint on a common scale for
a fair comparison. We chose the second option.

Let g denote our CSM fingerprint, w denote the Santer
fingerprint, and ag and aw denote the corresponding am-
plitudes. We consider renormalization of the fingerprints
by their L2 norms (sum of squared values): \g\2 5 90
and \w\2 5 100. Standardizing each fingerprint by the
square root of its norm, we suggest that if we are to
compare projections of the data

Y ø Ï90a (gÏ1/90 ) ø Ï100a (wÏ1/100 ),g w

then we expect that aw ø 0.95 ag.
A simple transformation of the prior developed for

ag takes us to a comparable prior for aw: namely, mA 5
(0.95)(0.17) 5 0.162, t A 5 (0.95)(0.05) 5 0.0475, and
t 5 (0.95)(0.02) 5 0.019. Since this argument is quite
ad hoc and leaves us less certain about where we an-
ticipate aw to be, we thought it reasonable to use a larger
class of priors for a robust Bayesian analysis: namely,
we assumed that Gw be generated by the ranges mA ∈
[0.13, 0.21] and t A ∈ [0.05, 0.08]. (Compare these with
mA ∈ [0.15, 0.19] and t A ∈ [0.05, 0.07] used for our
fingerprint.)
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FIG. 6. Fingerprint pattern generated by Santer et al. (1995), after their Fig. 3b, on a 58 3 58 grid.

TABLE 3. GLS estimates of a and associated standard deviations for each of the four data subsets using the Santer et al. (1995)
fingerprint.

Fingerprint

1961–98

â s

1970–98

â s

1980–98

â s

1988–98

â s

Santer
CSM

0.0394
0.0589

0.017
0.022

0.062
0.093

0.019
0.025

0.1117
0.1612

0.024
0.031

0.1508
0.2200

0.031
0.041

For brevity, we present results only for detection and
attribution analyses. We again associate detection with
small probabilities Pr(aw ∈ [20.05, 0.05] | â), and attri-
bution with large probabilities Pr(aw ∈ [mA 2 0.05,
mA 1 0.05] | â) (recall, now the baseline mA 5 0.162).
Figures 7 and 8 are plots of these probabilities and rang-
es as functions of p for the time periods a and b. For
time periods c and d, the probabilities of the detection
region are tightly bounded around zero for reasonable
values of p and thus not presented in Fig. 7. For these
same time periods, the probabilities of the attribution
region are constant across the range of p with values
0.65 and 0.95 and constant bounds from the robust anal-
ysis (0.05, 0.98) and (0.90, 0.96), respectively.

The results appear somewhat less definitive for the
Santer fingerprint than for the CSM fingerprint. In par-
ticular, the ranges on probabilities appear larger, but of
course the class Gw is larger than its counterpart. How-
ever, there is one major exception: time period d now
yields very strong and robust attribution. Note that the
estimate of aw from this period does fall in the range
of means defined by Gw. Indeed, our overall conclusion

is in concert with that of our CSM-based fingerprint:
namely, there is strong evidence in the recent data for
detection and attribution to CO2 forcing as reflected in
either fingerprint.

b. Comparison to traditional results

We provide traditional, non-Bayesian detection and
attribution results. By non-Bayesian detection, we mean
rejection of the null hypothesis that a 5 0, when com-
pared to the alternative hypothesis a . 0. Such a test
rejects when the significance probability or p value for
the test is small. By non-Bayesian attribution, we mean
failure to reject (or ‘‘acceptance’’ of ) the null hypothesis
that a 5 mA, when compared to the alternative hypoth-
esis a ± mA. Intuitively this is indicated by a relatively
large significance probability. Note that the results given
in Table 4 are generally in accordance with simple sum-
maries of our Bayesian results. One exception is the
apparent strong, traditional detection results for both
fingerprints based on the full data for the time period
1961–98. Our companion Bayesian analyses are more
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FIG. 7. Posterior probability Pr(a ∈ [20.05, 0.05] | â) as a function
of the prior probability p based on two time periods: (top) 1961–98
and (bottom) 1970–98. The solid lines in each denotes the posterior
probabilities for the data. The dotted lines give the upper and lower
bounds on these probabilities from the robust Bayesian analysis.

FIG. 8. Posterior probability Pr(a ∈ [mA 2 0.05, mA 1 0.05] | â) as
a function of the prior probability p based on two time periods: (top)
1961–98 and (bottom) 1970–98. The solid lines in each denotes the
posterior probabilities for the data. The dotted lines give the upper
and lower bounds on these probabilities from the robust Bayesian
analysis.

TABLE 4. Significance probabilities for traditional, non-Bayesian detection and attribution test results. Detection is suggested by very
small values; attribution may be suggested by moderate or large values.

1961–98

CSM Santer

1970–98

CSM Santer

1980–98

CSM Santer

1988–98

CSM Santer

Detection
Attribution

0.004
0.000

0.010
0.000

0.000
0.000

0.001
0.000

0.000
0.744

0.000
0.037

0.000
0.220

0.000
0.720

conservative. This is a result of the fact that the non-
Bayesian calculation only considers the plausibility of
the hypothesis a 5 0 exactly, while the our Bayesian
formulation studies the plausibility of a lying near zero.
Such conservatism through more attention to uncertain-
ty suggests that one may derive comparatively more
confidence in our Bayesian detections when they do
occur. The situation is somewhat reversed in the context
of attribution. The traditional test considers the plau-
sibility of the the value a 5 mA exactly, while our Bayes-
ian formulation essentially considers events of the form
‘‘a lies near mA.’’ Nevertheless, the use of robust Bayes-
ian calculations in conjunction with inspection of prac-
tical significance of results suggest both the inferential
value and robustness of the Bayesian viewpoint.

c. Computation

Though the form of GLS estimates used here is sim-
ple, the actual calculations for finding â and s 2 are not
easy, primarily due to the presence of the inverse of the
very high dimensional matrix V. However, the calcu-
lations only require that we compute two quadratic
forms [the numerator and denominator in (7)]. Rather,
than attempting inversion of V, we numerically solved
the linear equation

Vz 5 H. (21)

Since z 5 V21H, the computations are completed by
finding two products: Y9z and H9z. We used the con-
jugate gradient algorithm to approximate the solution
z (Golub and van Loan 1996).

d. Extensions

An intriguing and important issue involves the se-
lection of fingerprints. In our analysis we viewed the
fingerprint g as fixed. Of course, we might also quantify
our uncertainty about g (e.g., Allen and Tett 1999). (Be-
fore doing so, we must entertain the question of the
existence of a g.) In developing a joint prior on ag and
g, a two-step thought process may be a value. Any joint
prior, p(g, a g ) can be factored as p(g, a g ) 5
p(ag | g)p(g). This means one can build the prior on the
fingerprints, and then a prior on amplitudes conditional
on fingerprints. For example, we might envision a col-
lection of models or theories, each of which produces
particular forms of fingerprints, and then implied dis-
tributions on the ag. One can use the Bayesian strategy
to assess the models (see Leroy 1998), as well as to
combine information from them. In the statistics liter-
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ature, these tracks are known as model selection and
model averaging, respectively.

The specification and interpretations of modeled
quantities are intricately related. We have already al-
luded to the intertwining of fingerprints g and ampli-
tudes a. In addition, the meaning of climate variability,
expressed through S must be gauged against the specific
that the primary model is essentially a signal-plus-noise
model. That is, S does not exist in isolation but rather
is defined to reflect variation around a particular spec-
ification of the mean (taken here to be zero) of anom-
alies. The difficulty is that the anomalies are in turn
defined as departures from some, typically ad hoc, base-
line. These apparently subtle issues merit more careful
attention to enable unequivocal interpretation of statis-
tically estimated amplitudes.

e. Objectivity versus subjectivity

Bayesian statistics is by nature subjective; people
with different priors may arrive at different conclusions.
This issue has a long history and many interesting points
of discussion (Berger 1985; Bernardo and Smith 1994),
especially since traditional statistics methods are often
thought to be objective. In complex settings it is difficult
to argue that only objectivity really guides analysis; a
variety of assumptions are made about the modeling.
Indeed, substantial prior information is used in deciding
on methods of analysis and data sources to be used, as
well as in the final interpretation of results. Rather than
‘‘sweeping them under the carpet’’ (a phrase due to I.
J. Good in this context), the Bayesian seeks to make
clear what the assumptions are and quantifies them. This
enables comparatively simple assessments of model as-
sumptions and permits inspections of the sensitivity of
results to these assumptions. Of course, we admit that
there is essentially no such thing as a perfect Bayesian,
and in that spirit, alluded to the robust Bayesian view-
point.

However, even if we accept that classical statistical
results are objective, we reiterate that they are only in-
direct answers to the fundamental questions typically of
interest. Further, what about climate change science
should be objective? The public is not interested in truly
objective predictions regarding climate change, and so
on. Rather, the most informed, intelligent predictions
ought to be the goal. This statement should not be mis-
interpreted to suggest that analysts should base analyses
on their personal hidden agendas, bounties on ‘‘proofs’’
of anthropogenic climate change or the reverse, and so
on. Rather than being objective, analyses should be im-
partial (a word used by Laplace in this context), but
informed by the best information and scientific opinion
available. Again, there may be no such thing as a perfect
and impartial Bayesian. Nevertheless, Bayesians sug-
gest that the most effective way to seek impartiality as
a community is for analyses to include description and
quantification of the prior information used.
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APPENDIX A

Estimation of Variability

a. Data errors covariance

The observational error covariance matrix D was ob-
tained from the standard errors of Jones et al. (1997).
These standard errors were computed for each decade
from 1856 to 1998. Figure A1 presents the average of
these decadal standard errors. We assumed the yearly
standard errors were equal to each other within each
decade. Hence, we set the annual standard errors to be
(10)1/2 times the decadal standard errors provided in
Jones et al. (1997).

b. Natural climate variability

First, we define the Kronecker product of two ma-
trices BI3J and CK3L. Let B(i, j) denote the i, jth element
of B. Define B J C to be the IJK 3 IJL matrix obtained
by expanding the products B(i, j) 3 C over all pairs
(i, j).

Our estimation of S is based on a critical assumption.
Namely, we assume that S is space–time separable, in
that it can be factored as

S 5 Sc J Ss, (A1)

where Sc is an m 3 m matrix representing temporal
dependencies and Ss is an n 3 n matrix representing
spatial dependence structure. This assumption implies
that we can estimate the spatial and temporal matrices
separately. While we do not believe space–time sepa-
rability is strongly defensible, we make the assumption
for practical reasons. It also offers some adjustment for
temporal dependence.

1) ESTIMATION OF Sc

We set Sc to be the correlation matrix for an auto-
regressive process of order one (Brockwell and Davis
1991). In particular, all diagonal elements are equal to
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FIG. A1. Standard errors from Jones et al. (1997) for the global temperature data over the period 1856–1998 on a 58 3 58 grid.

one. Off diagonal elements are of the form rd, where d
is the time lag in years. We estimated r from the CSM
control run. The result was 5 0.33.r̂

2) ESTIMATION OF Ss

For the space–time separable model with Sc specified
as a correlation matrix, Ss is a spatial covariance of Tt

for every year t. That is, it can be estimated (using
surrogate model output) by averaging over years. Data
from the 300-yr NCAR CSM control run are denoted
by C 5 ( , . . . , )9, where Ci is an n vector of theC9 C91 300

model output of global temperatures at time i 5 1, . . . ,
300. We model Ss as the sum

201
s 2S 5 yI 1 l P P9 , (A2)O i i i1 2300 i51

where the li 2 Pi are the first 20 singular value EOF
pairs from the NCAR CSM control run. Here y was set
to 100. (The division by 300 is an adjustment for sample
size.)

APPENDIX B

Robust Bayesian Calculations

We compute the minimum and maximum values of
p(â) over the class G defined in (18). We assume that
the lower bound, m l, on mA is a positive value. We also
assume that â is positive.

We rewrite p(â) in (14) as

21 2 p â
2 2p(â) 5 1 1 Ït 1 s exp 0.55 1 2 1 22 2[ ]p Ït 1 s

21

23 Q(m , t ) ,A A 6 (B1)

where

21 (â 2 m )A2Q(m , t ) 5 exp 20.5 . (B2)A A 2 2 2 21 2[ ]!t 1 s t 1 sA A

Minimization (maximization) of p(â) involves max-
imization (minimization) of Q. The special form of Q
enables these optimizations in two simple steps.

a. Case 1: â , ml

To minimize Q we should first set mA 5 mu, since
Q(mu, ) # Q(mA, ) for all t A in G. It remains then2 2t tA A

to minimize Q(mu, ) with respect to t A. The derivative2t A

of this function with respect to is2t A

2 2dQ(m , t ) (m 2 â)u A u
5 H 2 1 , (B3)

2 2 2[ ]dt t 1 sA A

where H is strictly positive. Therefore, we must consider
three subcases:

Case a: If (mu 2 â)2/( 1 s2) . 1 on G, Q is in-2tA
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creasing and the minimizing value of is the end-2t a

point .2t l

Case b: If (mu 2 â)2/( 1 s2) , 1 on G, Q is de-2tA

creasing and the minimizing value of is the end-2t a

point .2t u

Case c: If (mu 2 â)2/( 1 s2) 5 1 somewhere in G,2tA

Q is minimized at either ; one simply2 2t or tl u

checks these two values numerically.

Next, to maximize Q we first set mA 5 ml, since
Q(ml, ) $ Q(mA, ) for all t A in G. To maximize2 2t tA A

Q(ml, ) with respect to t A, repeat the differentiation2t A

argument as in (B3). This again leads to three subcases:

Case a: If (ml 2 â)2/( 1 s2) . 1 on G, Q is in-2tA

creasing and the maximizing value of is the2t a

endpoint .2t u

Case b: If (ml 2 â)2/( 1 s2) , 1 on G, Q is de-2tA

creasing and the maximizing value of the end-2t a

point .2t l

Case c: If (mu 2 â)2/( 1 s2) 5 1 somewhere in G,2tA

that value is the maximizer; namely, 5 (ml 22tA

â)2 2 s2.

b. Case 2: ml # â # mu

To minimize Q we set mA to be that endpoint of the
interval that is farthest from â. Let m* denote the result.
That is, m* 5 mu, if

m 1 ml uâ # ,
2

otherwise, m* 5 m l. Then we again turn to differenti-
ation to complete the minimization.

Case a: If (m* 2 â)2/( 1 s2) . 1 on G, the min-2tA

imizing value of .2 2t is ta l

Case b: If (m* 2 â)2/( 1 s2) , 1 on G, the min-2tA

imizing value of .2 2t is ta u

Case c: If (m* 2 â)2/( 1 s2) 5 1 somewhere in2tA

G, the minimizer is either .2 2t or tl u

To maximize Q we first set mA 5 â, since Q(â, )2t A

$ Q(mA, ) for all t A in G. Hence, we need only max-2t A

imize ( 1 s 2)21/2, which of course leads to as the2 2t tA l

solution.

c. Case 3: â . mu

This case is similar to Case 1. To minimize Q we set
mA 5 ml. Then

Case a: If (ml 2 â)2/( 1 s2) . 1 on G, the minimizer2tA

is .2t l

Case b: If (ml 2 â)2/( 1 s2) , 1 on G, the minimizer2tA

is .2t u

Case c: If (ml 2 â)2/( 1 s2) 5 1 somewhere in G,2tA

the minimizer is either .2 2t or tl u

To maximize Q set mA 5 mu. Next,

Case a: If (mu 2 â)2/( 1 s2) . 1 on G, the max-2tA

imizer is .2t u

Case b: If (mu 2 â)2/( 1 s2) , 1 on G, the max-2tA

imizer is .2t l

Case c: If (mu 2 â)2/( 1 ss 2) 5 1 somewhere in2tA

G, the maximizer is (mu 2 â)2 2 s2.
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