Graduate Student Researcher: Summer 2003 - October 2005, while a student in CU-Boulder's Department of Applied Mathematics.

Postdoctoral Researcher: October 2005 - Present, joint (50%) appointment with CSU's Department of Statistics.

Projects: Primarily in the field of extreme value theory.

- Model for Paleoclimate reconstruction via lichenometry
- Model of extreme precipitation for Colorado's Front Range
- Madogram: a measure of spatial dependence for extremes
- Modeling precipitation events of different durations (ongoing)
- Spatial prediction for max-stable random fields (ongoing)

Colorado extreme precipitation examples

- Big Thompson Flood, 1976
 - 145 killed
 - \$41m damage

Eve Gruntfest, UCCS

- Ft Collins Flood, 1997
 - 5 killed
 - \$250m damage

John Weaver

Q: What is a given location's risk for an event like this?

Precipitation Atlases

NWS produces precipitation atlases which give a location's risk in terms of *return levels*.

The *r*-th year return level, z_r , is the level which one expects the annual maximum to exceed with probability p = 1/r.

NWS Atlas 2, 1973

- atlas currently used for Colorado
- no uncertainty estimates

NWS Atlas 14, 2003 & 2004

- two maps produced (Southwest US and Mid-Atlantic States)
- using Regional Frequency Analysis (RFA) technique

Study Region and Data

Data: 56 weather stations, 12-53 years of data/station, Apr 1 - Oct 31, First studied 24 hour precipitation measurements

Modeling *Climatological* Extremes:

Model's foundation is the Generalized Pareto Distribution:

$$P\{Z-u > z | Z > u\} = \left(1 + \frac{\xi z}{\sigma_u}\right)^{-1/\xi}$$

We assume that extreme precipitation is driven by a latent spatial process, which we model in a hierarchy.

data level:
$$[Z(x) > u | \sigma(x), \xi(x)]$$

process level: $[\phi(x) | x, \alpha_{\phi}, \beta_{\phi}]$
 $[\xi(x) | x, \alpha_{\xi}, \beta_{\xi}]$
prior level: $[\alpha_{\phi}, \beta_{\phi}, \alpha_{\xi}, \beta_{\xi}]$
 $\phi = \log(\sigma)$

Results at last year's panel meeting

Spatial Modeling

climate space

Exceedance Models Tested

Models in Latitude/Longitude Space		\bar{D}	p_D	DIC	
Model 1:	$\phi = \alpha_0 + \epsilon_{\phi}$	73442.0	40.9	73482.9	
	$\xi = \xi$				
Model 2:	$\phi = \alpha_0 + \alpha_1(msp) + \epsilon_\phi$	73441.6	40.8	73482.4	
	$\xi = \xi$				
Model 3:	$\phi = \alpha_0 + \alpha_1(\text{elev}) + \epsilon_\phi$	73443.0	35.5	73478.5	
	$\xi = \xi$				
Model 4:	$\phi = \alpha_0 + \alpha_1(\text{elev}) + \alpha_2(\text{msp}) + \epsilon_{\phi}$	73443.7	35.0	73478.6	
	$\xi = \xi$				
	Models in Climate Space	\bar{D}	p_D	DIC	
Model 5:	$\phi = \alpha_0 + \epsilon_{\phi}$	73437.1	30.4	73467.5	
	$\xi = \xi$				
Model 6:	$\phi = \alpha_0 + \alpha_1(\text{elev}) + \epsilon_\phi$	73438.8	28.3	73467.1	
	$\xi = \xi$				
Model 7:	$\phi = \alpha_0 + \epsilon_{\phi}$	73437.5	28.8	73466.3	
	$\xi = \xi_{mtn}, \xi_{plains}$				
Model 8:	$\phi = \alpha_0 + \alpha_1(\text{elev}) + \epsilon_\phi$	73436.7	30.3	73467.0	
	$\xi = \xi_{mtn}, \xi_{plains}$				
Model 9:	$\phi = \alpha_0 + \epsilon_{\phi}$	73433.9	54.6	73488.5	
	$\xi = \xi + \epsilon_{\xi}$				
$\epsilon_{\cdot} \sim MVN(0, \mathbf{\Sigma})$ where $[\sigma]_{i,j} = eta_{\cdot, 0} \exp(-eta_{\cdot, 1} oldsymbol{x}_i - oldsymbol{x}_j)$					

25-year Return Level Point Estimate

Return Level Uncertainty

Modeling Other Duration Periods

Time series for durations greater than one hour "artificially" created from 1 hour time series, models run separately.

Problem with separate approach

100-year return level					
	6-hour	12-hour			
Hartsel	7.82 cm	7.76 cm			

Current Work

Can we model all duration periods at once and obtain consistent estimators?

- Combine the different durations' time series?
- Time series approach?

Can we explain the decreasing tail weight?