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Scientific Motivation: Estimation of climate sensitivity S

S = global-mean surface temperature change when doubling C'O-.

Various research methods
to estimate the pdf of s Our method belongs to the class of
methods that provide shorter confidence intervals
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e Ongoing research on ‘constraining’ the right tail of the pdf of
S: how large will be the increase of global-mean surface
temperature change when doubling C0O>7?



T he statistical problem and our approach

e STATISTICAL PROBLEM: Estimation of parameters 6 in the
nonlinear

regression model
Y = f(X,0) +e

when computing f requires a great computational effort.
(Y observations, X covariates, ¢ random errors)

e OUR APPROACH: Construct a computationally faster
approximation for the computationally intensive nonlinear
function f, and account for the approximation error.

This approximation is based on statistical Design and Analysis
of Computer Experiments (DACE) methodology.



What is methodologically new?

e The use of DACE in the context of model calibration

e DACE multidimensional (mostly DACE scalar in literature)

e Our approach is statistically more rigorous:
- It accounts for various sources of uncertainty;
- 1t includes space-time correlation;

e New space-time covariance for output data



A naive nonlinear regression model

e T he simplest model tried: nonlinear regression
Observed Climate = Modeled Climate ([S, Ky, Fuer]) + .

e Observed Climate: averages of observed climate variables
(e.g. temperature, precipitation) over long time periods.

e Modeled Climate: output variables (e.g. temperature, precipi-
tation) from a numerical model, which are averaged over long
time periods.

e Climate model parameters 0 = [S, Ky, Fuer]
- S: Equilibrium climate sensitivity: global-mean surface tem-
perature change if doubling CO, (°C)
- K,: Global-mean vertical thermal diffusivity for the mixing of
thermal anomalies into the deep ocean (cm?/sec)
- F,r: Net aerosol forcing (W/m?)

e Computational challenge !l "Modeled Climate’ requires 4 hours
computational time for each 6 => Iterative likelihood maximiza-
tion not feasible!



The proposed statistical model

e Our statistical model will be a modification of the previous
nonlinear regression

Observed Climate = Modeled Climate () + e.

Y = fo + €

f may also depend on covariates X (e.g. precipitation).

Modification of the nonlinear regression:
Y — fo+ (fo- fo) + ¢
Y fo + E 4+ ¢

e fy computationally faster surrogate (i.e. approximation) for f.

e [/ and ¢ normal errors.



Method (Y = fo + E + ¢)

DACE — Design and Analysis of Computer Experiments (fg and Error E)

e Sample a number of parameters 6, run the climate model and
obtain the output data.

e Construct a statistical model for the output data.

e Build a statistical surrogate to predict the climate model output
data at new, not-sampled 0 parameters.

FIT THE OBSERVED DATA (Error €)

e Use the above DACE model to find 0 that best fits the observed
data, and characterize its uncertainty.



Sampled parameters 6 and the final data sets
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Temperature output data sets:
- Surface (5 decades x 4 latitude bands x 306 parameters)

- Deep-ocean (linear trend x 306 parameters)

- Upper-air (26 latitudes x 8 pressure levels x 306 parameters)

Temperature observed data sets:

- Surface (5 decades x 4 latitude bands)

- Deep-ocean (linear trend: scalar)

- Upper-air (26 latitudes x 8 pressure levels)

Data sets are vectorized



Statistical model for output data

(Y =1Fo+ E+ ¢)

The output data set at sampled parameters
(surface temperatures)

fS — fS,s + fS,n
fs s climate signal, fs, climate model internal variability.
fs ~N(pl,02(Co®C, @ Cy) + 12l M)

- Co,C,, C; matrices of power exponential correlations.
- [ estimated from ensemble members

o If 0 =03(Co®C.®C) +viIQT,
the likelihood for output data

1 1 1
L(fs) = (\/T—W)Nymexp(—i(fs - Ml)/zc_al(fs —pl))

IS maximized and the statistical parameters will be fixed at their
point estimate values.



Statistical surrogate for the climate model

(Y =1Fo+ E+ ¢)

For 6 arbitrary (sampled or not) in the parameter space

E(fos|fs)

fo,s climate signal, fs climate model output data.
fo=pl+ Lo g (Xs — pl)
E ~ N(0, V), Vo = Ug(cz ® Ct) — ieezg)lilee,

where
oo = 02(Cho ® C. ® Cy),

and Cyo gives the correlation between the new parameter 6 and the
set of sampled parameters O.



Nonlinear statistical model for observations

(Y =1Fo+ E+ ¢)

L(Y|0) := L(Y|6, other stat parameters) =

1 N 1 1 = 5 4 ~
¥ —=(Y = f)'(V, R.® R) Ny —
G s ey 3 Wit PR R - )

R., Ry matrices of exponential correlations.

Ys observed surface temperature change
Y observed deep ocean temperature trend
Yr observed upper air temperature change

Overall likelihood to be optimized (conditional independence)
L(Ys, Yk, Yrl0) = L(Ys|0)L(Y|0) L(Y#|0).

A single likelihood evaluation takes about 10 sec.



Results

e Parametric bootstrap MLE sample of size 300.

e Nonparametric kernel density estimation of MLE pdf.
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Future work

e Optimum design: how can we choose the model runs (sampled
parameters) to minimize the volume of the confidence region?

e Bayesian model based on our likelihood development for a direct
comparison with previous Bayesian methods for estimating pdf
of S.

e Analyze other climate data sets (e.g. precipitation);

e T heoretical study: are the bootstrap MLEs of the unknown
parameter " attracted” by the sampled (design) parameters?

Paper to be submitted to
Journal of the Royal Statistical Society: Series C (Applied Statistics)



