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Motivating Question

Extreme precipitation under various climate scenarios

• Can regional climate model return level estimations be used to

obtain return level predictions at the station level?

• Relationship between extremes of grid-cell data (re-analysis NCEP)

and weather station data (NCDC)

• Leads to relationship between climate model data and point

source data
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Data

• Point-source observational data from NCDC, originally obtained

from Dr. Pavel Groisman

• Covers period 1950-1999 over 5873 stations.

• The data are daily rainfall values; units are tenths of a millimeter.

• Grid-cell data are from NCEP

• Covering period 1948–2003 with no missing data on 288 2.5o

grid cells, converted to the same units as the NCDC data.

• Rainfall values are considered over the four seasons

• Threshold values are determined by the 95th and 97th percentiles

• Clustering method is used to define peaks
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Outline of Techniques

• Relationship of grid cell n-year return levels to the n-year return

levels at point locations is explored

• Patterns are similar, scales differ

• Need model to translate between grid level and point level returns
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Outline of Techniques

Tail of the Generalized Extreme Value distribution (GEV) is fit to

the grid cell data above a given threshold

Pr{Y ≤ y} = exp

−
(
1 + ξ

y − µ

ψ

)−1/ξ

+

 (1)

where Y is a random variable, µ is a location parameter, ψ a scale

parameter and ξ is the extreme-value shape parameter; µ and ξ can

take any value in (−∞,∞) but ψ has to be > 0.
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Technique

• Peaks Over Threshold model: considers Pr{X ≤ u+ x | X > u}
for a given threshold u; the parameters are directly tied to the

threshold value

• Point process approach is similar to the peaks over threshold

method: all observations over a given threshold are considered.

Tail of GEV is estimated.

• However, in the PP approach, the parameters are not tied to the

threshold value.
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Theory Provided the model fits the data:

• PP approach should produce equivalent parameter values as the

POT approach

• Parameters are independent of the threshold (adjusting for esti-

mation error)

• Ideal threshold determined by considering where the parameter

values stabilize
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Theory

Choose to model n-year return due to interpretability. Event so ex-

treme it is expected to happen once every n years: (1
n probability/yr)

The n-year return values can be directly obtained using the estimated

GEV parameters. Define yn by the equation:(
1 + ξ

yn − µ

ψ

)−1/ξ

=
1

n

which leads to the formula:

yn =

µ+ ψn
ξ−1
ξ if ξ 6= 0,

µ+ ψ logn if ξ = 0.
(2)
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Recap

• GEV parameter estimates are obtained and checked through var-

ious diagnostics

• GEV parameter estimates are used to generate n-year return

levels at grid and station levels

• Various models are explored to predict point location n-year re-

turn from grid cell n-year return
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GEV Model Fit - Mu Parameter: 95 Grid - Point vs 97 Grid - Point
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GEV Model Fit - LogPsi Parameter: 95 Grid - Point vs 97 Grid - Point
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GEV Model Fit - Xi Parameter: 95 Grid - Point vs 97 Grid - Point
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100-Year Return: Point vs Grid - LogPoint vs Grid
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100-Year Return: LogPoint + Elevation vs Grid
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Model Results and Comparison Univariate Regres-

sion Predicting Point Locations 100-Year Return Level Using Grid Cell

100-Year Return

WINTER - 100 OBS AIC Intercept X1 X2
log(Pt) Grid+Elev 4025 3425 5.3186 0.0030 -0.000124

97 log(Pt) Grid+Elev 4013 3356 5.3074 0.0030 -0.000113
SPRING - 100 OBS AIC Intercept X1 X2

log(Pt) Grid+Elev 4138 1924 5.8960 0.0023 -0.000258
97 log(Pt) Grid+Elev 4145 2282 5.9736 0.0021 -0.000281

15



100-Year Return: LogPoint ∼ Grid + Elevation Spatial Trend

Fitted 100-Yr Return Values Residuals
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100-Year Return: LogPt ∼ Grid + Elevation Including Lat and Lon

Quadratic Model Residuals

Cubic Model Residuals
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100-Year Return: LogPt ∼ Grid + Elevation Including Lat and Lon

Variograms of Log(Pt)+Elevation

Quadratic Variogram Cubic Variogram
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Other Models Considered
Cubic vs Quartic

• Cubic and quartic models show little difference in the remaining
spatial trend

• Cubic model: all terms and interaction terms are significant in
the model

• Quartic model: some terms are no longer significant, including
elevation

• AIC vs BIC

Elevation

• Quadratic models in elevation: did not resolve the spatial cor-
relation among station return levels as well as the higher order
models in latitude and longitude
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Conclusion and Future Work

• Modeling the tail of the GEV Distribution appears to produce

stable GEV parameter estimates and model coefficients within

seasons and across 95% and 97% thresholds

• 100 year return levels are successfully modeled by season at the

point (station) level using grid-level return values, station eleva-

tion, and station latitude and longitude coordinates

• The regression relationship between climate model predictions

and future modeled extremes is best expressed through a cubic

model in latitude and longitude to account for the spatial cor-

relation, with R2 = 0.77 and standard errors within 1.008 and

1.056 tenths of a millimeter.

• Future work includes plans to test grid-point models on RCM

and CCSM data
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Theory

To take account of these deficiencies, an alternative class of meth-

ods has been developed, often known as the Peaks Over Thresholds

(POT) approach. For the distribution of the excess values, a com-

mon family of probability density functions is the Generalized Pareto

Distribution (GPD), introduced by Pickands (1975), and given by

Pr{X ≤ u+ x | X > u} = 1−
(
1 + ξ

x

σ

)−1/ξ

+
. (3)

One drawback in the POT model is that the parameters are directly

tied to the threshold value, u.

A third approach, the point process approach (Smith 1989, 2003,

Coles 2001), although operationally very similar to the POT ap-

proach, uses a representation of the probability distribution that

leads directly to the GEV parameters (µ, ψ, ξ).
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Theory

The Point Process method considers N peaks, Y1...YN , observed at

times T1...TN . Pairs are viewed as points in the space [0, T ]× (u,∞)

(u=threshold), which form a nonhomogeneous Poisson process with

intensity measure:

λ(t, y) =
1

ψ

(
1 + ξ

(y − µ)

ψ

)−1
ξ −1

+
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Theory

By standard formulae for a Poisson Process, the likelihood is of the

form:

L(µ, ψ, ξ) =
N∏
i=1

λ(Ti, Yi) · exp
{
−
∫ T
0

∫ ∞

u
λ(t, y)dtdy

}

=
N∏
i=1

λ(Ti, Xi) · exp

−T
(
1 + ξ

u− µ

ψ

)−1/ξ

+

 . (4)
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Theory

In practice we work with the negative log likelihood, ` = − logL,

which leads to

`(µ, ψ, ξ) = N logψ+

(
1

ξ
+ 1

) N∑
i=1

log

(
1 + ξ

Yi − µ

ψ

)
+

(5)

+ T

(
1 + ξ

u− µ

ψ

)−1/ξ

+

where T is the length of the observation period in years and the (...)+
symbols essentially mean that the expression are only evaluated if

1 + ξu−µψ > 0 and 1 + ξYi−µψ > 0 for each i (if these constraints are

violated, L is automatically set to 0).
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Theory

• The basic method of estimation is therefore to choose the pa-

rameters (µ, ψ, ξ) to maximize (??) or equivalently to minimize

(5).

This is performed by numerical nonlinear optimization.

• In practice it is convenient to replace (µ, ψ, ξ) by (θ1, θ2, θ3) where

θ1 = µ, θ2 = logψ, θ3 = ξ (defining θ2 to be logψ rather than

ψ itself makes the algorithm more numerically stable, and has

the advantage that we don’t have to build the constraint ψ > 0

explicitly into the optimization procedure).
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