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Personal Background
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• Dissertation at the Swiss Federal Institute of Technol-
ogy in Lausanne under the supervision of Prof. Stephan
Morgenthaler (Oct 2001):

‘Estimating Cumulative Distributions by Spline Functions’

• Consulting statistician (for food scientists, chemists, bi-
ologists, consumer experts etc.) at the Nestlé Research
Center in Lausanne (Nov 2001 – July 2003):

Experimental designs & analysis of results, visualization,
multivariate techniques common to consumer science

• Postdoctoral researcher, chair of statistical hydrology,
National Scientific Research Institute, Water, Earth and
Environment, Québec (Sep 2003 – March 2005):

Nonstationarity in regional frequency analysis, short term
discharge prediction using a hidden Markov model
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A Generalized Linear Modeling Approach

to Stochastic Weather Generators



NSF Project
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Understanding and Modeling the Scope for

Adaptive Management in Agroecosystems in

the Argentine Pampas in Response to Inter-

annual and Decadal Climate Variability and

Other Risk Factors

Biocomplexity in the Environment / Dynamics of Coupled Natural
and Human Systems



(Selected) Project Objectives
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1. Build plausible scenarios of inter-annual and inter-decadal

climate variability.

⇒ weather generator

2. Explore best practices for the characterization of uncer-

tainty, and the design and communication of climate in-

formation.

⇒ probabilistic treatment & ?



Location: Argentine Pampas
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Marked interannual (ENSO) and inter-decadal (increase in

precipitation since 1970) climate signals.

Pergamino:

near-optimal conditions

Pilar:

marginal conditions

(semi-arid)



Classical Weather Generator
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Generates consistent daily weather series based on data from

the target location by:

• Two-state (wet and dry), first order Markov chain for

precipitation occurrence.

• Gamma distribution for precipitation intensity:

conditional on occurrence, independent of previous

occurrence or intensity.

• 1) Standardization of minimum and maximum tempera-

ture series conditional on precipitation occurrence.

2) Bivariate AR(1) model for the standardized series,

normality assumption satisfied at Pergamino.



Precipitation: Occurrence
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Model: binomial with log link

log
(

pk
1− pk

)
= xTkβ

where pk probability of rain for the kth record

xk covariates (previous occurrence, season, ENSO)

β parameter vector
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Precipitation: Intensity
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Model: Gamma with log link

log
(
µk

)
= ξTk γ

where µk mean precipitation intensity for the kth

record (if wet)

ξk covariates (season, ENSO)

γ parameter vector

⇒ constant coefficient of variation

Only seasonal cycle is significant.



Temperature: Model
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Model: Xt = µX,0 + µX,1Jt + ψXYt−1 + ξTk γX + εX,t

εX,t = φXεX,t−1 + uX,t

Yt = µY,0 + µY,1Jt + ψYXt + ξTk γY + εY,t

εY,t = φY εY,t−1 + uY,t

where Xt, Yt daily minimum and maximum temperature

Jt precipitation occurrence, 1=wet, 0=dry

εX,t, εY,t AR(1)

uX,t, uY,t N (0, σ2
X) resp. N (0, σ2

Y ), uncorrelated

ξk covariates (season, ENSO)



Temperature: Illustration
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To Do
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• Generate weather series from the generalized weather

generator.

• Provide “usable” programming of the generalized weather

generator, for example as an R-package.

• Take into account parameter uncertainty in generating

climate scenarios.

• Improve treatment of precipitation/temperature extremes.

• Model the dependence of the variability of the tempera-

ture variables on the season (or on covariates).
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The Kriging Estimator as a Local Smoother



Splines as Local Smoothers
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Model: yi = g(xi) + εi, εi iid N (0, σ2)

Estimation: min
f∈H

[
1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ

∫ 1

0
f ′′(x)2dx

]

Solution: ĝ(x) =
1

n

n∑
i=1

ω(x, xi)yi (spline weight fcn)

Approximation: ω(x, xi) ≈ Gλ(x, xi) reproducing kernel

under conditions on x1, . . . , xn

Asymptotics: Exponential envelope condition for Gλ

⇒ asymptotic bias and variance of ĝ



Kriging in “Spline Form”
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Model: yi = g(xi) + εi,

g ∼MN (0, ρK) ⊥ εi ∼MN (0, σ2I),

Cov(g(x), g(x′)) = ρk(x,x′)

Estimation: min
f∈H

[
1

n

n∑
i=1

(
yi − f(xi)

)2
+ λ〈f, f〉P

]

Solution: ĝ(x) =
1

n

n∑
i=1

ω(x,xi)yi (kriging weight fcn)

Approximation: ω(x,xi) ≈ Gλ(x,xi) reproducing kernel

under conditions on x1, . . . ,xn

Asymptotics: Exponential envelope condition for Gλ

⇒ asymptotic bias and variance of ĝ



Obstacle
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Exponential envelope condition for Gλ?

Problem: Gλ known through its Fourier transform

Ĝλ(ω) =
(
1 + λ 1

k̂(ω)

)−1

Approach: Matern class of covariance fcns

k̂(ω) = 1
(α2+ω2)ν+1

Next step: Approximate inverse Fourier transform

and prove the condition

or

Use connections with Laplace transform

without the functional form of Gλ
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Additional Slides



Data at Pergamino
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Normality
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Defects
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Temperature: Illustration
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Temperature: Crosscorrelation
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Correlation: max temp(t) and min temp(t)
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Temperature: Lag 1 Crosscorr.
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