A Generalized Linear Modeling Approach to Stochastic Weather Generators

and

The Kriging Estimator as a Local Smoother

Eva Maria Furrer

Advisory Panel Meeting, April 27 2006

Personal Background

• Dissertation at the Swiss Federal Institute of Technology in Lausanne under the supervision of Prof. Stephan Morgenthaler (Oct 2001):

'Estimating Cumulative Distributions by Spline Functions'

- Consulting statistician (for food scientists, chemists, biologists, consumer experts etc.) at the Nestlé Research Center in Lausanne (Nov 2001 July 2003):
 Experimental designs & analysis of results, visualization, multivariate techniques common to consumer science
- Postdoctoral researcher, chair of statistical hydrology, National Scientific Research Institute, Water, Earth and Environment, Québec (Sep 2003 – March 2005):

Nonstationarity in regional frequency analysis, short term discharge prediction using a hidden Markov model

A Generalized Linear Modeling Approach to Stochastic Weather Generators

NSF Project

Understanding and Modeling the Scope for Adaptive Management in Agroecosystems in the Argentine Pampas in Response to Interannual and Decadal Climate Variability and Other Risk Factors

Biocomplexity in the Environment / Dynamics of Coupled Natural and Human Systems

(Selected) Project Objectives

- 1. Build plausible scenarios of inter-annual and inter-decadal climate variability.
 - \Rightarrow weather generator
- 2. Explore best practices for the characterization of uncertainty, and the design and communication of climate information.
 - \Rightarrow probabilistic treatment & ?

Location: Argentine Pampas

Marked interannual (ENSO) and inter-decadal (increase in precipitation since 1970) climate signals.

Pergamino: near-optimal conditions

Pilar:

marginal conditions (semi-arid)

Classical Weather Generator

Generates consistent daily weather series based on data from the target location by:

- Two-state (wet and dry), first order Markov chain for precipitation occurrence.
- Gamma distribution for precipitation intensity: conditional on occurrence, independent of previous occurrence or intensity.
- 1) Standardization of minimum and maximum temperature series conditional on precipitation occurrence.

2) Bivariate AR(1) model for the standardized series, normality assumption satisfied at Pergamino.

7

Precipitation: Occurrence

Model: binomial with log link

$$\log\left(\frac{p_k}{1-p_k}\right) = \mathbf{x}_k^T \boldsymbol{\beta}$$

where p_k probability of rain for the kth record

 \mathbf{x}_k covariates (previous occurrence, season, ENSO)

eta parameter vector

Precipitation: Intensity

Model: Gamma with log link

$$\log\left(\mu_k\right) = \boldsymbol{\xi}_k^T \boldsymbol{\gamma}$$

where μ_k mean precipitation intensity for the kth record (if wet)

- $\boldsymbol{\xi}_k$ covariates (season, ENSO)
- γ parameter vector

 \Rightarrow constant coefficient of variation

Only seasonal cycle is significant.

Temperature: Model

Model:
$$X_t = \mu_{X,0} + \mu_{X,1}J_t + \psi_X Y_{t-1} + \boldsymbol{\xi}_k^T \boldsymbol{\gamma}_X + \varepsilon_{X,t}$$

 $\varepsilon_{X,t} = \phi_X \varepsilon_{X,t-1} + u_{X,t}$

$$Y_t = \mu_{Y,0} + \mu_{Y,1}J_t + \psi_Y X_t + \boldsymbol{\xi}_k^T \boldsymbol{\gamma}_Y + \boldsymbol{\varepsilon}_{Y,t}$$
$$\boldsymbol{\varepsilon}_{Y,t} = \phi_Y \boldsymbol{\varepsilon}_{Y,t-1} + u_{Y,t}$$

where X_t , Y_t daily minimum and maximum temperature J_t precipitation occurrence, 1=wet, 0=dry $\varepsilon_{X,t}$, $\varepsilon_{Y,t}$ AR(1) $u_{X,t}$, $u_{Y,t}$ $\mathcal{N}(0, \sigma_X^2)$ resp. $\mathcal{N}(0, \sigma_Y^2)$, uncorrelated $\boldsymbol{\xi}_k$ covariates (season, ENSO)

Temperature: Illustration

Minimum temperature at Pergamino

11

To Do

- Generate weather series from the generalized weather generator.
- Provide "usable" programming of the generalized weather generator, for example as an R-package.
- Take into account parameter uncertainty in generating climate scenarios.
- Improve treatment of precipitation/temperature extremes.
- Model the dependence of the variability of the temperature variables on the season (or on covariates).

The Kriging Estimator as a Local Smoother

Splines as Local Smoothers

Model:

$$y_i = g(x_i) + \varepsilon_i$$
, $\varepsilon_i \text{ iid } \mathcal{N}(0, \sigma^2)$

Estimation:

$$\min_{f \in \mathcal{H}} \left[\frac{1}{n} \sum_{i=1}^{n} \left(y_i - f(x_i) \right)^2 + \lambda \int_0^1 f''(x)^2 \mathrm{d}x \right]$$

Solution:

$$\hat{g}(x) = \frac{1}{n} \sum_{i=1}^{n} \omega(x, x_i) y_i$$
 (spline weight fcn)

Approximation: $\omega(x, x_i) \approx G_{\lambda}(x, x_i)$ reproducing kernel under conditions on x_1, \ldots, x_n

Asymptotics: Exponential envelope condition for G_{λ} \Rightarrow asymptotic bias and variance of \hat{g}

Kriging in "Spline Form"

Model:

 $y_i = g(\mathbf{x}_i) + \varepsilon_i,$ $g \sim \mathcal{MN}(\mathbf{0}, \rho \mathbf{K}) \perp \varepsilon_i \sim \mathcal{MN}(\mathbf{0}, \sigma^2 \mathbf{I}),$ $\operatorname{Cov}(g(\mathbf{x}), g(\mathbf{x}')) = \rho k(\mathbf{x}, \mathbf{x}')$

Estimation:

$$\min_{f \in \mathcal{H}} \left[\frac{1}{n} \sum_{i=1}^{n} \left(y_i - f(\mathbf{x}_i) \right)^2 + \lambda \langle f, f \rangle_{\mathsf{P}} \right]$$

Solution:

$$\hat{g}(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \omega(\mathbf{x}, \mathbf{x}_i) y_i$$
 (kriging weight fcn)

Approximation: $\omega(\mathbf{x}, \mathbf{x}_i) \approx G_{\lambda}(\mathbf{x}, \mathbf{x}_i)$ reproducing kernel under conditions on $\mathbf{x}_1, \dots, \mathbf{x}_n$

Asymptotics:

Exponential envelope condition for G_{λ} \Rightarrow asymptotic bias and variance of \hat{g}

Obstacle

Exponential envelope condition for G_{λ} ?

Problem:

 G_{λ} known through its Fourier transform $\hat{G}_{\lambda}(\omega) = \left(1 + \lambda \frac{1}{\hat{k}(\omega)}\right)^{-1}$

Approach:

Matern class of covariance fcns

 $\hat{k}(\omega) = \frac{1}{(\alpha^2 + \omega^2)^{\nu+1}}$

Next step:

Approximate inverse Fourier transform and prove the condition

or

Use connections with Laplace transform without the functional form of G_{λ}

Additional Slides

Data at Pergamino

Monthly precipitation total per month

Normality

Maximum temperature w/o precipitation per month

Defects

Generalized weather generator

Simple weather generator

Occurrences of tmax < tmin

Occurrences of tmax < tmin

20

Temperature: Illustration

Maximum temperature at Pergamino

Temperature: Crosscorrelation

Generalized weather generator

Correlation: max temp(t) and min temp(t)

Simple weather generator

Correlation: max temp(t) and min temp(t)

Temperature: Lag 1 Crosscorr.

Generalized weather generator

Simple weather generator

23