Tomoko Matsuo’s collaborators

Thermosphere-Ionosphere GCM Modeling
- A. Richmond (NCAR-HAO)
- T. Fuller-Rowell and M. Codrescu (NOAA)

Polar Ionosphere Data Assimilation
- A. Richmond, G. Lu, and B. Emery (NCAR-HAO)
- D. Lummerzheim (U of Alaska)
- M. Hairston (U of Texas, Dallas)

Spatial Statistics
- D. Nychka (NCAR-IMAGe)
- D. Paul (U of California, Davis)

Middle Atmosphere Data Assimilation
- J. Anderson (NCAR-IMAGe)
- D. Marsh and A. Smith (NCAR-ACD)
Sun-Earth Connection
Multi-resolution Based Nonstationary Covariance Modeling: Monte-Carlo EM approach

Tomoko Matsuo

in collaboration with

Doug Nychka & Debashis Paul (UC, Davis)
Surface Ozone

standard deviation

O_3 is one of six common pollutants

EPA’s national air quality standards (80 ppb)

1997 Data Set

- 364 locations on 48×48 grid
- 184 days from May to Oct
Motivation and Goal

Motivation:
Flexible Nonstationary Covariance Model
Gaussian Model in Spatial Statistics

- Kriging (geostatistics)
 [e.g., Higdon et al., 1999; Fuentes, 2001; Fuentes and Smith, 2001; Nychka et al., 2003; Sampson and Guttorp, 1992; Anderes and Stein, 2005]

- Variational and OI methods (data assimilation)
 [e.g., Purser et al., 2005; Gaspari et al., 2006]

Goal and Challenges: Computational efficiency

- Irregularly distributed observational data
- Large data set
Nonparametric Model

$$\Sigma = \mathcal{W} H^2 \mathcal{W}^T$$

$$H = \begin{bmatrix} H_{00} & H_{01} \\ H_{10} & H_{11} \end{bmatrix} \approx \begin{bmatrix} \tilde{H}_{00} & 0 \\ 0 & \tilde{H}_1 \end{bmatrix}$$

where \tilde{H}_{00} is thresholded and $\tilde{H}_1 = \text{diag}(H_{11})$

Enforced sparsity in H
Covariance Estimator

Gaussian Model:

\[f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \sim \mathcal{N}(0, \Sigma_\theta) \quad \text{where} \quad \Sigma_\theta = \mathcal{W} \tilde{H}^2(\theta) \mathcal{W}^T. \]
Gaussian Model:

\[f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \sim \mathcal{N}(0, \Sigma_\theta) \quad \text{where} \quad \Sigma_\theta = \mathcal{W} \tilde{H}^2(\theta) \mathcal{W}^T. \]

Monte-Carlo EM [e.g., Wei and Tanner, 1990]:

\[Q(\theta, \theta^*) = E[\mathcal{L}(f, \theta) | f_1, \theta^*] \]

\[\approx \frac{1}{N} \sum_{n=1}^{N} \mathcal{L} \left(\begin{pmatrix} f_1 \\ f_2^{(n)} \end{pmatrix}, \theta \right) \]

MC sampling: \[f_2^{(n)} \sim [f_2 | f_1, \mathcal{W} \tilde{H}^2(\theta^*) \mathcal{W}^T] \]
Covariance Estimator

Gaussian Model:

\[
f = \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \sim \mathcal{N}(0, \Sigma_{\theta}) \quad \text{where} \quad \Sigma_{\theta} = \mathcal{W}\hat{H}^2(\theta)\mathcal{W}^T.
\]

Monte-Carlo EM [e.g., Wei and Tanner, 1990]:

\[
Q(\theta, \theta^*) = E[\mathcal{L}(f, \theta) | f_1, \theta^*] \\
\approx \frac{1}{N} \sum_{n=1}^{N} \mathcal{L} \left(\begin{pmatrix} f_1 \\ f_2^{(n)} \end{pmatrix}, \theta \right)
\]

MC sampling: \(f_2^{(n)} \sim [f_2 | f_1, \mathcal{W}\hat{H}^2(\theta^*)\mathcal{W}^T] \)

Smoothed MC EM [e.g., Silverman et al., 1990]:

\[
Q(\theta, \theta^*) + p(\theta)
\]
Different thresholding in \tilde{H}

Lev 2, 86.08% (5045)

Lev 3, 98% (8363)
Validation

Sample v.s. Modeled Correlation

(a) Stationary

(b) lev 2 86%, smoothed

(c) lev 3 98% (20 iteration)
Summary and Future Work

To be submitted to JASA or JRSS-B

- Flexible nonstationary covariance model $\mathcal{W} \tilde{H}^2 \mathcal{W}^T$
- Theory to support sparsity in \tilde{H}
- Practical estimator (Monte-Carlo EM) to handle the incomplete data
- Examples using surface ozone data
Summary and Future Work

- To be submitted to JASA or JRSS-B
 - Flexible nonstationary covariance model $\mathcal{W} \tilde{H}^2 \mathcal{W}^T$
 - Theory to support sparsity in \tilde{H}
 - Practical estimator (Monte-Carlo EM) to handle the incomplete data
 - Examples using surface ozone data

- Another ozone application
 - in collaboration with Eric Gilleland (NCAR-RAL)
Summary and Future Work

To be submitted to JASA or JRSS-B
- Flexible nonstationary covariance model $\mathcal{W} \tilde{H}^2 \mathcal{W}^T$
- Theory to support sparsity in \tilde{H}
- Practical estimator (Monte-Carlo EM) to handle the incomplete data
- Examples using surface ozone data

- Another ozone application in collaboration with Eric Gilleland (NCAR-RAL)

- Application to the Polar Ionosphere
 - Aurora image data (\sim 100K)
 - Prior covariance for ionospheric data assimilation