
A Statistics Program at NCAR, Project Summary

A grand scientific challenge for this century is to understand the complex interrelationships among
the atmosphere, ocean, land processes, biosphere and human activities that define the Earth System.
Coupled with this effort is the need to predict changes to our environment and to translate such changes
into more immediate economic and societal impacts. There is a corresponding challenge for statistical
science to tackle the large and complex data sets that are now the norm in many areas of science and
engineering and to leverage the rich structure and prior knowledge afforded by traditional numerical
models.

The Geophysical Statistics Project (GSP) at the National Center for Atmospheric Research (NCAR)
provides a unique opportunity for research that addresses the challenges to the geosciences and statistics.
The plan of research and a three-part visitor program will enable GSP to bridge the geosciences and
the statistical research communities. A Postdoctoral Fellows (PF) program, that has been successful
though past support, will continue to train recent statistics Ph Ds in interdisciplinary collaboration
and statistical research for application in the geosciences. A Thesis-In-Residence program will support
the visit of graduate students to NCAR to incorporate substantial geophysical applications as part
of their dissertation research. A Statistics Chautauqua will be a month-long program primarily for
young statistics faculty and will involve a series of lectures and interactions with NCAR scientists on
collaborative research in the geosciences and statistics. Each of these programs will help statistical
researchers target geophysical applications. Moreover, GSP will also use its vantage point at NCAR
and the visitor programs to spur new statistical research that is motivated by geophysical questions and
data.

Intellectual Merit

The statistical research includes contributions to the analysis of spatial and spatio-temporal data, the
design and analysis of computer experiments, filtering, the statistics of extremes, data mining, and sta-
tistical computing. Many of these methods will be adapted to large data sets and publicly available
software will be developed to implement new methods for spatial spatial data and extremes. The intel-
lectual contributions to applications in the geosciences will be equally broad and include the introduction
of stochastic modeling for sub-grid scale processes, estimating the climatology for extreme events, the
construction of spatially coherent weather generators and statistical improvements to methods of data
assimilation. An important element throughout this research is being able to quantify the uncertainty
in a derived method or result.

Broader Impacts

This collaborative research will participate in the broader science initiatives at NCAR and in so doing
align individual projects with the larger challenges facing the geosciences. Through the training of
young researchers, a vigorous visitor program, regular sponsored workshops and alliances with other
research centers and academic departments, this work will reach a wide community and serve as model
for collaboration among statisticians and researchers in the geosciences. A broader impact will be
the creation of an infrastructure for the statistics research community to address applications in the
geosciences. The long term results will be the solution of some of the difficult problems in the geosciences
through the transfer and development of new statistical methodology.



Project Description

1 Results From Prior NSF support

A Statistics Program at the National Center for Atmospheric Research (7/1999-6/2004) DMS-9815344
has provided significant support for the Geophysical Statistics Project (GSP), a statistical research
and training group embedded within the National Center for Atmospheric Research (NCAR — NCAR
has a staff of more than a 1000 members including several hundred Ph.D. scientists and receives more
than half of its funding from the NSF Division of Atmospheric Sciences.). GSP has been a successful
model for making contributions to atmospheric and oceanographic sciences through the development
and application of new statistical methodology. This has been achieved by supporting a critical mass of
statistics visitors at NCAR, training young researchers, and maintaining close collaboration with NCAR
geophysical scientists.

The long-term impact on statistics has been substantial, not only contributing a large body of
published research and software, but also through an extended network of university researchers who have
participated in GSP as visitors and postdoctoral fellows (PF). GSP’s impact on geophysical researchers
has been through statistics by example. Successful collaboration with NCAR scientists has provided case
studies where new statistical methods have tackled problems and questions that otherwise would not
have been attempted. Scientific applications identified through GSP have also suggested new statistical
models and theory.

1.1 Scientific Accomplishments

Because of the emphasis on collaborative research, GSP scientific results have appeared in leading sta-
tistical, geophysical, and environmental statistical publications. A noteworthy feature of this research
is that the majority of publications are co-authored by both geophysical and statistical scientists. In
order to succinctly report this wide range of research; project publications, submitted manuscripts and
technical reports have been organized into some broad categories. This outline is complemented by more
detailed highlights of some key scientific contributions.

Statistical methodology and theory
Time series analysis [8],[7],[22],[26],[27],[28],[43],[48],[57],[55],[59],[81],[80],[88],[102],[109],[110],[116],[114];
Spatial statistics [24],[31],[100],[63],[69],[71],[76],[93],[45];
Space/time processes [16],[91],[96],[94];
Nonlinear time series and dynamical systems [6],[83];
Nonparametric regression [18],[42],[22],[44],[72],[73],[90],[104],[106],[107],[108],[115];
Bayesian methodology [29],[30];
Analysis of functional data [52],[53].

Geophysical Applications
Analysis of the climate record [46],[65],[77],[78],[105],[111];
Time series analysis [1],[17],[32],[38],[39],[47],[56],[70],[75],[74],[86],[99],[89],[103];
Spatial fields [20],[23],[49],[58];
Validation and statistical analogs of numerical models [2],[4],[5],[3],[19],[62],[98];
Extreme events [37],[35],[41],[50],[60],[61];
Climate change [15],[54],[14],[51],[68],[113],[112];
Forecasting and data assimilation [9],[10],[12],[21],[79],[84],[85],[101],[82].

Overviews and surveys [11],[13],[25],[33],[34],[36],[64],[66],[67],[95],[97],[92].



1.2 Research Highlights

The following sampling of GSP research accomplishments helps emphasize the substantial collaboration
among the postdoctoral fellows/visiting scientists and resident NCAR scientists. These highlights are
meant to be illustrative; they only constitute a subset of GSP research activities.

Statistics for large spatial datasets A challenge to spatial statistics is to scale methods from the
moderate-size datasets considered in the statistics literature to the large and substantive records assem-
bled to study the atmosphere and oceans. As a testbed problem, GSP has constructed spatially and
temporally complete monthly meteorological records for the coterminous U.S. based on historical mete-
orological data ([31]). The work implemented local covariance models that blended sample correlations
with a global covariance model, successfully handled a large number of spatial locations (8000-12000)
over many time points (1200 months) and provided cross-validated measures of uncertainty of the in-filled
estimates. Motivated by large geophysical datasets, two related projects are to adapt multi-resolution
models for nonstationary ([69]) and non-Gaussian fields ([57]).

Statistical analogs of atmospheric numerical models The size and complexity of output pro-
duced by state-of-the-art geophysical models often require statistical descriptions to understand and
summarize the overall behavior and specific aspects of the simulated system. Cloud-resolving models
(CRM) are fine-scale convective models for the atmosphere that can create and evolve individual clouds.
Extreme value distributions were used to model maximum vertical velocity ([61]) in CRM output as a
stochastic representation of processes that are important for large-scale atmospheric general circulation
models (GCM). One result was a quantification of the impact of wind exceedances on the total mass
flux in the CRM domain. Also based on model output, multi-resolution methods have been designed
to extract features representing the organization of convection (e.g. squall lines) ([62]), providing an
objective classification of the types of convection in a model simulation. Current GCMs rely on heuristic
schemes to overlap cloud layers and this may introduce biases in the amount of absorbed and reflected
radiation in the atmosphere. As an alternative, a statistically based cloud overlap model was estimated
from CRM experiments and was found to give better simulation of the radiative fluxes ([98]).

At a larger spatial scale, a combination of nonlinear time series models and clustering algorithms have
been used to summarize the dynamical properties of the large-scale atmospheric circulation from a long
integration of the NCAR Community Climate Model (CCM0) ([83]). The statistical model quantified
the system’s nonlinear behavior and identified regimes in phase-space whose dwell times were found to
be consistent with the timescales of atmospheric motions.

Data assimilation and forecasting Data assimilation refers to combining information from a
geophysical model with observations to give an improved estimate of the state. This process lies at the
heart of operational numerical weather prediction and has formal relationships to nonlinear filtering.
Current work in the atmospheric sciences community is on a (Monte Carlo based) Ensemble Kalman
Filter (EnKF). GSP statistical contributions include extensions to non-Gaussian distributions for the
state ([9],[10],[99]). By applying multivariate statistical theory, it was possible to analyze and better
characterize the dependence of EnKF performance on ensemble size ([101]).

Aircraft are substantially affected by the presence of clear air turbulence. This localized atmospheric
phenomenon is very difficult to predict using conventional weather forecast models. A successful approach
trained a flexible discriminant model on pilot reports of turbulence using turbulence indices derived from
a numerical weather prediction model as predictors ([84],[85]). These statistical forecasts outperform
other operational approaches currently tested at NCAR.

Analysis of long-term climate series Long-term variation in solar irradiance can be confounded
with possible climate change due to human activities, consequently, it is important to investigate the
relationship between solar flux and surface temperatures. A multi-resolution analysis was applied to
several proxy measures of solar flux and to proxies for temperature to determine the relationship among
these climate time series ([70]). One main result indicates evidence for the forcing of temperature by
solar flux on a timescale consistent with the Gleissberg cycle (period of ≈ 85 years). Another influence
on temperature records are large, explosive volcanic eruptions that inject substantial amounts of sulfur
dioxide into the lower stratosphere. A multiprocess state-space model was estimated and was able
to identify and quantify the impulse-like volcanic signal in proxy records, thus distinguishing those



temperature proxy series that are more sensitive to aerosol loading ([1],[56]).

1.3 Postdoctoral and Graduate Training

The highest priority of the project has been to recruit and train new recipients of Ph.D.’s in statistics
and probability. GSP has been able to attract high quality individuals from nationally-ranked programs
in statistics and has placed the majority of GSP fellows in university positions or in other research
environments (the second line in the list below indicates the fellow’s subsequent position). One milestone
that indicates the growing maturity of GSP is the presence of Tebaldi as a Project Scientist and Gilleland
as an Associate Scientist on on the permanent NCAR scientific staff.

Former postdoctoral fellows and placement

Craig Johns, Statistics, U. of California - Davis, 1999; GSP 8/1999- 7/2001
Assistant Professor, Dept. of Mathematics, U. of Colorado - Denver.

Philippe Naveau, Statistics, Colorado State U., 1998; GSP, 7/1998- 12/2000
Assistant Professor, Dept. of Applied Mathematics, U. of Colorado - Boulder

Claudia Tebaldi, Statistics, Duke U., 1997; GSP, 12/1997-6/2000
Project Scientist, Environmental and Societal Impacts Group, NCAR.

Enrica Bellone, Statistics, U. Washington, 2000; GSP 9/2000- 9/2002
Research Associate, Dept. of Civil and Environmental Engineering, Imperial College, London.

Brandon Whitcher Statistics, U. Washington, 1998; GSP 9/2000- 9/2002
Senior Researcher, Research Statistics Unit, GlaxoSmithKline, London.

Hee-Seok Oh: Statistics, Texas A&M, 1999; GSP 9/2000- 8/2002
Assistant Professor, U. of Alberta.

Thomas Bengtsson: Dept. of Mathematics, U. of Missouri, 1999; GSP 8/2000-8/2003
Jerzy Neyman (visiting) Assistant Professor, U. of California at Berkeley.

Current postdoctoral fellows and research interests

Sarah Streett, Statistics, Colorado State U.; 9/2000- Non-Gaussian time series and spatial processes.

Reinhard Furrer, Statistics, Swiss Federal Institute of Technology, 9/2002- Spatial statistics, filtering.

Jarrett Barber, Statistics, North Carolina State U., 9/2002- Misaligned data, nonstationary fields.
(75% appointment Duke U.)

Uli Schneider, Applied Mathematics, CU - Boulder, 7/2003- Perfect sampling, extremes.

Tomoko Matsuo, UCAR/State U. of New York - Stonybrook 7/2003- Data assimilation.

Dorin Drignei, Statistics, Iowa State U., 1/04- Analysis of computer experiments.

GSP-supported graduate students and research interests

Eric Gilleland, Colorado State U., 9/1999 - 12/2002 Air Quality, space-time models, extremes.
Associate Scientist, Research Applications Program, NCAR

Curtis Storley, Colorado State U., 6/2003 - Data mining, feature tracking.

Dan Cooley, CU - Boulder, 5/2003 - Paleoclimate, extremes.



1.4 Outreach

Workshops
GSP-sponsored workshops covered statistics relevant to applications in the geophysical sciences and
provided an introduction to some outstanding problems in the geosciences. Each workshop was attended
by more than 50 participants divided among graduate students, post docs, and senior researchers in
statistics and the atmospheric sciences.

Statistics for Large Datasets [24-26 July 2000] included speakers on scientific visualization and data
mining as well as statistics for geophysical and environmental problems. It was jointly sponsored by the
National Research Center for Statistics and the Environment, University of Washington.

Spatio-Temporal Modeling [1-6 June 2003] brought together senior and young researchers in applied
mathematics, statistics and environmental sciences and was jointly sponsored by the Statistical and
Applied Mathematical Sciences Institute.

Statistical software
GSP has been active in developing statistical packages suited to the analysis of geophysical or spatial
data. The base URL for GSP software is http://www.cgd.ucar.edu/stats/software.shtml and the
main postings are:

Fields An R package focused on the analysis of spatial data including large datasets and nonsta-
tionary covariance models and simulation.

Waveslim A package in R for wavelet analysis.
RadioSonde [R,S] functions to ingest common radiosonde data files and optionally create SKEW-

T/log p plots and wind profiles.
DI: Design Interface A graphically-based interactive program in S-PLUS c©that allows one to edit

and evaluate spatial designs.
Snackbar [R,S] routines for reading netCDF, Fortran, and C binary files.
extRemes toolkit A package in R for extremes.

Visiting scientists to GSP
To foster connections with the university statistics community, GSP also maintains a shorter term visitor
program. Senior visitors have been chosen with the postdoctoral fellows in mind, as they often serve as
additional mentors. A typical short-term visitor gives one or more seminars to GSP and local statistics
groups and meets individually with each GSP post doc. GSP has supported several longer term visitors
from local statistics group to visit on regular basis; e.g. R. Jones and S. Sain (U. Colorado) and T.
Lee (Colorado State U.). A number of statistics graduate students have also visited GSP in conjunction
with their thesis research or as interns.

Partial visitor list:
Senior visitors and faculty: W. Eddy, Carnegie Mellon U.; D. Ruppert, Cornell U.; J. Berger, M.
Clyde, D. Higdon, M. West, Duke U.; A. Grady, D. Holland, EPA; Z.-Q. Lu, Hong Kong U.; T.-H.
Li, IBM; N. Cressie, Iowa State U.; A. Chedin, IPSL-LMD Ecole Polytechnique; A. Braverman, JPL;
I. Jolliffe, King’s College; A. Kaplan, Lamont-Doherty; L. Sparling, NASA/Goddard; G. Huerta, New
Mexico State U.; M. Genton, North Carolina State U.; M. Berliner, Ohio State U.; D. Cox, Rice U.;
J. Red-Horse, Sandia National Labs; T. Hastie, Stanford U.; S. Morgenthaler, Swiss Fed. Inst. of
Technology; R. Eubanks, Texas A&M; G. Nason, U. of Bristol; P. Bickel, J. Rice, U. of California -
Berkeley; R. Shumway, U. of California - Davis; J. Corcoran, U. of Colorado - Boulder; K. Kafadar,
S. Sain, U. of Colorado, Denver; R. Lund, U. of Georgia; B. Bailey, U. of Illinois; F. Turkman, U. of
Lisbon; C. Wikle, U. of Missouri. W. Dunsmuir, U. of New South Wales; J. Stroud, U. Pennsylvania; S.
Marron, R. Smith, U. of North Carolina; T. Haas, U. of Wisconsin.
Students: R. Buchberger, M. Eschenberg, Colorado State U.; C. Paciorek, Carnegie Mellon U.; E.
Gilleland, C. Storlie, Colorado State U.; R. Paolo, Duke U.; P. Abbit, Iowa State U.; M. Vrac, IPSL-
LMD Ecole Polytechnique. A. Nail, K. Madsen, North Carolina State U.; B. Fournier, Swiss Fed. Inst.
of Technology; Y. Munoz, Texas A&M; L. Welty, U. Chicago; U. Schneider, D, Cooley, U. of Colorado;
V. Bulaevskaya, U. of Minnesota; P. Caragea, U. of North Carolina; B. Das, U. of Washington.



2 Overview: A Statistics Program at NCAR

A grand scientific challenge for this century is to understand the complex interrelationships among the
atmosphere, oceans, land processes, biosphere, and human activities that define the Earth System. Cou-
pled with this effort is the need to predict and quantify changes to our environment and to translate
such changes into more immediate economic and societal impacts. Hallmarks of this research are com-
plex numerical models describing geophysical processes and societal impacts. Complementing modeling
activities are a rich variety of observational and experimental data that are used to suggest new model
components, evaluate existing models, and are used for prediction (in concert with numerical models).
The exponential increase in computing resources and the proliferation of satellite-based observing sys-
tems have supported an unprecedented growth in both numerical modeling and observational datasets.
However, despite the promise of these vast new modeling tools and massive geophysical data records,
there remains the challenge of integrating models across many different scales and fusing the information
afforded by observations with models. Statistical science will be indispensable for integrating models,
interpreting diverse types of geophysical data, assimilating data into numerical models, and developing
rigorous measures of analysis uncertainty.

The most fruitful areas for growth of the sciences are those between established fields. ...
It is these boundary regions of science that offer the richest opportunities to the qualified
investigator. (Norbert Wiener)

A grand challenge for statistical science is to tackle the large and complex datasets that are now the norm
in many areas of science and engineering and to leverage the rich structure and prior knowledge afforded
by traditional numerical models. New methodology in many areas of statistics including spatio-temporal
models, Bayesian statistics for high-dimensional problems, extremes, data mining, and experimental
design can be motivated by the need to scale statistical tools to massive datasets and to fashion statistical
models that enhance the collaboration of statisticians with other scientists. We assert that the geosciences
and, in particular, a focus related to the atmosphere and the Earth System, are a fertile testbed to pursue
new statistical methodology.

The Geophysical Statistics Project (GSP) at the National Center for Atmospheric Research (NCAR)
provides a unique opportunity for research that addresses the challenges to the geosciences and statistics.
NCAR’s mission is to lead large, multidisciplinary research projects that would be difficult for individual
faculty or universities to pursue. The scientific program at NCAR, supported by several hundred Ph.D.
scientists, is characterized by extensive experimental and observational datasets and mature numerical
models. It is precisely this scientific context that motivates the challenges faced by statistical science.

We outline a plan of research and a three-part visitor program that will enable GSP to bridge the
geosciences and the statistical research communities. In addition to a Postdoctoral Fellows (PF) program,
GSP will reach graduate students through a Thesis-In-Residence program and young faculty through
a Statistics Chautauqua1. This proposal builds on past successful programs and adds new elements
that broaden GSP’s connections and outreach. There will also be an expansion in GSP’s scientific
involvement at NCAR by nesting the statistical research within broad strategic initiatives of the center.
The participation of GSP in these initiatives represents a new level of integration of statistics at NCAR
and this alignment makes it possible to contribute to the grand challenge problems of the Earth system
and statistical science.

3 Statistical Research

The geosciences offer a rich context for statistical research and methodology. Geophysical processes
often possess complex interactions at many different temporal and spatial scales and are associated with
extensive observational datasets and numerical models. Coupled with the influence of human activities
on the environment and the vulnerability of society to extreme events, an added level of complexity is

1Chautauqua: A community assembly for educational purposes patterned after the summer cultural
and educational center in Chautauqua, NY.



layered onto the physical and biological systems. From this perspective, we propose projects that are
diverse in both geophysical application and statistical research.

3.1 Spatial Processes

Statistical methodology for spatial data is a focus for GSP. Nearly every project has a spatial component
and nearly every member of GSP achieves some expertise in this area. Geophysical fields are nonsta-
tionary and so a primary area of research is developing flexible, computationally efficient representations
for nonstationary covariance functions. This work will focus on representations using multi-resolution
bases, such as wavelets ([69],[133],[119]), and process convolution approaches ([136]). To fix concepts,
let f be a spatial field on a regular grid and f = Wa be an expansion where the columns of W are
basis functions and a are random coefficients with covariance D. A useful decomposition for the covari-
ance matrix for f is WDWT . A multi-resolution approach would consider a wavelet basis for W and
focus on sparse structure for D. In contrast, process convolution builds structure into W , often with
stationary specifications for D. A fundamental area of statistical research is to understand the kinds
of processes that can be approximated by these models and balance the trade-off between covariance
model complexity and the accuracy of spatial predictions.

Another primary area of research is to scale statistical methods to handle large spatial prediction
problems where observations occur at irregular locations. One approach is to introduce sparsity in
the covariance matrix by tapering with a compactly supported (positive definite) kernel (e.g. [128]).
Given the correct choice of taper, this approach can be justified based on matching the tail behavior
of the spectral density of the covariance function ([164]). This analysis suggests that, under certain
assumptions, spatial process estimators and classical kernel estimators will be asymptotically equivalent.
Thus we see the potential to unify these two approaches for function estimation.

The modeling of non-Gaussian random fields faces the basic challenge of formulating useful depar-
tures from the multivariate normal. A flexible approach is the use of a latent Gaussian field to drive
non-Gaussian behavior. For example, it has been effective to model the patchiness of daily precipitation
occurrence (rain/no rain) over space by thresholding a Gaussian process. The introduction of nonsta-
tionary covariance models depending on covariates (such as season, elevation or aspect in the case of
precipitation) will yield an important class of models for binary fields.

Modeling forecast error covariance functions The National Centers for Environmental Pre-
diction (NCEP) regularly archives its weather forecasts along with the observations. The comparison
of forecast with observed is a way to assess the forecast skill. Although the forecast (or background)
error covariance matrix is a main ingredient of the variational methods used in operational weather
forecasting, this forecast verification dataset has not been closely studied or modeled. To understand
how the forecast error covariance depends on the predicted atmospheric flow, we will use the partial
derivatives of the predicted wind vector field (the strain tensor) as a covariate for anisotropic covariance
models. This analysis may suggest statistical models for the error covariance function as a function of
the atmospheric state and lead to adaptive background covariances for data assimilation.

Electric field dynamics in the upper atmosphere The variability of the upper atmospheric
electrodynamics is not well determined because of the sparsity of observations and the rapid temporal
variation of the ionosphere relative to measurements ([143],[120]). For example, direct measurements of
the (two-dimensional) electric field at a particular time are only sampled by single satellite tracks. A
statistical problem is to determine a two-dimensional covariance function based on single one-dimensional
transects of many independent realizations of the field. Preliminary work ([49]) based on principal
components with missing data ([130]) has produced physically interpretable results. The goal is to
produce a complete covariance function using a multi-resolution basis and to incorporate this model into
the Assimilative Mapping of the Ionosphere Electrodynamics procedure (AMIE)([155]).

Soil properties The analysis of soil properties is important for assessing the impact of climate
change on agriculture (through crop models) and for the land component of a climate model ([131]).
One aspect of crop model research is to quantify the variability in soil characteristics across space to
understand biases in aggregation. Another issue is to relate bulk properties of the soil to the water
holding capacity (the pedotransfer function) ([152]). A useful Bayesian model for the pedotransfer



function is a multivariate regression model with additive components whose priors are based on Matern
families of processes. This approach is more flexible than most parametric versions in soil science and
also allows for generating ensembles of depth profiles as a way of characterizing the uncertainty in soil
properties.

3.2 Space-Time Processes

Spatial fields that evolve over time are ubiquitous in the physical sciences. Although there is some
work on space-time covariance functions ([123]) and more recent ideas on Matern-like families ([163]) a
process-oriented approach considers a hierarchical model (HM) that allows for the blending of physical
dynamics with stochastic components estimated from data (or model output) ([167],[91],[96],[93],[16]).
For example, if xt is the field at time t; xt = g(xt−1, θ) + ut. Here g incorporates basic physical
dynamics of the system along with possible dependence on parameters and ut is a stochastic process
that can evolve according to an autoregressive process: ut = Wat and at = Gat−1 + εt. The next
level of the hierarchy considers models for θ, G and other parameters and additional layers can add
still more structure. At the bottom of this hierarchy, physical information can be incorporated using
informative priors on some of the parameters, leveraging the Bayesian paradigm. Thus, hierarchical
models build complex behavior through a series of simpler models and become a powerful statistical
method when developed using (approximate) physical theory and prior knowledge. A basic statistical
issue is to balance the complexity of the HM with the ability to estimate hidden components of the model
from limited data. This is not only an issue of model selection and parsimony but also has an impact
on the efficiency of Markov Chain Monte Carlo sampling of high-dimensional posterior distributions.

Stochastic subgrid-scale parameterizations A fundamental problem in the construction of mod-
els for the atmosphere and ocean is that they are limited in spatial and temporal resolution. Processes
that occur at smaller scales can not be modeled directly and are accounted for by a parametrization
based on the larger scales of the model state. For example, in a General Circulation Model (GCM)
individual thunderstorms (convection) can not be resolved and so the important vertical mixing and
transport of heat must be inferred through a parametrization. We will explore stochastic parametriza-
tions where a random component incorporates the indeterminacy of the subgrid-scale processes based
on the large-scale states. This project builds from a growing interest in introducing stochastic elements
into large-scale models for the atmosphere ([154],[141]). A series of experiments with a cloud-resolving
model (CRM)([148]) will be used to fit a statistical model that describes the spatio-temporal relation-
ship between the large-scale conditions and the resulting convective processes and cloud formation. To
produce a compact stochastic description of this process, the (cloud) fields will be represented using a
hierarchical model where the large-scale state variables enter as covariates and the physical relationships
are synthesized with stochastic modeling. The goal will be an easily computed stochastic description of
the convective process as a function of the GCM state.

Inferring CO2 fluxes from observations To model the present and future climate it is necessary
to have an understanding of the carbon cycle including the release and absorption of CO2. Although it
is difficult to measure sources and sinks for carbon directly, they can be inferred by solving an inverse
problem based on carbon concentration measurements ([151]). A statistical framework for this problem
has two components. An observational model relates CO2 fluxes to concentrations at given locations and
times and a state equation describes the temporal and spatial structure in the fluxes. The observation
equation depends on an atmospheric transport model taking observed (analysis) winds as input and
advecting CO2; one important issue is to include uncertainty in the transport operator. The state
equation will have a HM structure along with a regression component based on seasonality and land
cover. This project will explore the potential of HMs to yield estimates and companion measures of
uncertainty for a spatio-temporal field and quantify the capability of the current network for monitoring
CO2. An important extension is to include other constituents, such as CO, to improve estimates of
transport.

Weather generators and spatially coherent downscaling Stochastic weather generators play
an important role in the assessment of climate change. Their function is to simulate realistic daily
meteorology (based on a particular climate) to be used as inputs for agricultural, hydrologic, health



effects, or energy models ([147],[146],[145]). A useful model for daily meteorology is an autoregressive
model that is conditioned by precipitation occurrence ([126]). This research will improve these models
by adding flexible, nonparametric transformations of weather variables that can account for the non-
Gaussian distributions of meteorology and an observation-driven model for precipitation occurrence that
can simulate more realistic runs of wet and dry days ([110]). The temporal model will also be extended
to simulate spatially coherent meteorology by adding spatially dependent shocks into the autoregressive
component and dependent binary fields for the occurrence process. Part of the statistical challenge is to
extrapolate the parameters and transformations in the model smoothly across space to locations where
data is not available. The result will be a stochastic model that can be used for regional assessment and
will accurately reproduce weather extremes and variability.

3.3 Design and Analysis of Computer Experiments

Sophisticated numerical models simulating complicated processes are now the norm in many fields and
often represent a synthesis of the state of knowledge of a particular system. The design and analysis of
computer experiments (DACE) focuses on space-filling type designs for the input space and the use of
stochastic process priors to model the response surface of the codes to the inputs ([157],[124]). Interpola-
tion or very small measurement errors make the estimators more sensitive to covariance misspecification
and extrapolation and so cross-validation techniques need to be blended with more formal Bayesian
formulations to give robust prediction uncertainties.

A generalization of the traditional designs for computer experiments is to consider both inputs and
outputs as being functional in value. For a climate experiment, the time-varying inputs of greenhouse
gases, aerosols and other forcings that drive the climate system are functional inputs and the resulting
spatial pattern of temperature change is a functional output. One design for functional inputs is to
expand the inputs in a low-dimensional set of basis functions and then apply a conventional design to the
coefficients. One constraint is to reproduce qualitative features in the input functions (e.g. monotonicity,
positivity), which may not be possible considering linear subspaces.

Typically, researchers develop a family of computer models varying in accuracy, run time and size.
Given limited computing resources and the need to make model predictions at many different input
combinations, the statistical problem is to combine the use of “cheap” models with “expensive” ones
while minimizing the prediction error. We will follow a framework of tuning cheap models to reproduce
the results of expensive runs and then using the cheap model as part of the extrapolation to predict
results under different input combinations (e.g. [118],[140]).

Designed experiments for different emission scenarios An emission scenario refers to the
temporal and spatial pattern of greenhouse gases and aerosols emitted into the atmosphere and depends
on projections of population growth, economic and societal changes, and possible mitigating actions
taken by governments ([144]). The statistical problem is to prescribe a concise set of emission scenarios
with the goal of accurately determining the future climate under a wide range of other possibilities. Part
of this task is to incorporate results of past model experiments as part of the design criterion as well as
natural constraints on the space of possible scenarios.

Climate model interpolation The number of climate model experiments using fully coupled At-
mosphere Ocean General Circulation Models (AOGCM)s with different emission scenarios is limited due
to computational resources. Based on a set of AOGCM experiments and an intermediate-size climate
model ([160]) a “cheap” versus “expensive” model strategy will be developed to predict under a variety
of other emission scenarios.

3.4 Particle Filtering and Data Assimilation

A basic filtering problem is to estimate the state of an evolving system based on noisy or incomplete
observations. A well-known example for the atmosphere is numerical weather prediction (NWP). The
solution usually involves two steps: 1) updating the distribution of the state of the system based on a
new observation and 2) propagating the distribution forward in time using a dynamical model. Particle
filters ([125]) are discrete approximations to the distributions in steps 1) and 2) and work well for



low-dimensional systems and stochastic system dynamics. However, these techniques do not extend
easily to NWP where the system is high-dimensional (e.g. d = 107) and the dynamics are largely
deterministic but nonlinear. As an alternative, the geosciences have developed ensemble Kalman Filters
(EnKF) as stable methods of filtering ([127],[117],[139]). The EnKF is surprisingly efficient even for very
small ensemble sizes (e.g. n=20), but there are several heuristic adjustments required to make these
algorithms function. Understanding why the approximations and tuning parameters work will provide
guidance for automatically tailoring the filter to new problems. Another outstanding statistical problem
is to estimate the stability and performance of the filter for different ensemble sizes and different numbers
of observations given assumptions about the system dynamics (e.g., its stationary distribution). It is
common that stable filters tend to yield narrower spreads in the forecast distributions when compared
to the true state of the system ([134]). Thus, another challenge is to construct stable and efficient filters
while modifying the forecast distribution to achieve more accurate inferences.

Blending non-Gaussian and Gaussian filters Many nonlinear systems exhibit non-Gaussian,
possibly multi-modal distributions for the state when sampled at large time intervals. In low-dimensional
systems it is possible to make substantial improvements by using a filter based on mixtures of Gaussian
distributions ([10]). However, in high-dimensional systems, it is not possible to consider an arbitrary
mixture distribution and the non-Gaussian and EnKF filters need to be blended effectively. One approach
is based on localization. Usually, updating a single observation strongly influences just a few components
of the state vector. A non-Gaussian update is proposed for this set of state components and the remainder
are updated using the EnKF. These ideas will be implemented in a mesoscale atmospheric model for
thunderstorms ([165]), where we expect bimodal forecast distributions for some of the state variables.

Adaptive algorithms for forecasting Numerical weather prediction is a cyclical procedure where
observations are assimilated and forecasts are made at regular intervals. The sequential nature of this
process suggests the possibility of statistical estimates for algorithm parameters that adapt to the current
weather regime or season. One approach is a sequential Bayesian procedure where the algorithm tuning
parameters are updated along with the state ([125]). There are several statistical problems that arise
from the nonlinearity of the system and the discrete approximation of the distributions. Some of these
include discounting the forecast distribution and balancing the amount of past information with the
variation in the system. Another application is to adjust for data quality and model bias through
a statistical process control model whereby the contribution of the data or model forecasts could be
down-weighted.

3.5 Scientific Data Mining

Data mining includes flexible statistical methods for pattern recognition, classification and regression
analysis in the context of large datasets. Although these methods are usually applied to commercial,
demographic, or health-related databases, a similar viewpoint can be useful in the physical sciences when
one must resort to semi-empirical models to identify or classify nonlinear phenomena (e.g. [137],[161]).
Two areas of focus in this proposal are image analysis and robust smoothing.

Identifying coherent structures in turbulent flows The classical nonlinear equations for fluid
flow are well known to simulate coherent structures such as vortices (hurricanes, ocean eddies) and jets
(the Gulf Stream) that cannot be understood directly from the physical equations. Moreover, three-
dimensional turbulent flow, appropriate for the atmosphere’s surface layer and charged particle flows,
yields coherent behavior (vortex sheets) that is even difficult to visualize. The statistical challenge is
to extract such coherent structures from the turbulent flow. Quantifying these structures can be useful
at a theoretical level to derive scaling laws ([166]) or to create indices that compare structures found in
observed data with those in model simulations. Research on isolating structures in images will include the
use of multi-resolution templates ([142],[90]), mathematical morphology ([159]), and adaptive tracking
algorithms ([138],[158]) for studying temporal evolution.

Quality-checking geophysical datasets The historical records for surface meteorological variables
and satellite data products are large and often contain spurious values. This research will develop flexible
and robust smoothers to flag large residuals. One promising method is wavelet thresholding based on
the “pseudo data” idea from robust regression ([73],[107]). A modeling issue is balancing the amount of



local smoothing against the outlier distribution. A sharp peak in the field could be attributed either to
nonstationary behavior of the process or to an outlier. Some approaches for the choice of local smoothing
parameters are to use covariates based on physical information from other sources or, based on temporal
information, accumulate a reference distribution for the average properties of the field.

3.6 Extremes

Key statistical issues are often driven by the tail behavior of a distribution rather than the central
tendency. Extremes play an essential role in assessing impacts from environmental and meteorological
factors because of the vulnerability of society to rare but extreme events. Extreme value theory, while
being well developed in univariate and bivariate settings, offers new areas of research in extending meth-
ods to spatial and spatio-temporal fields. Classically, maxima have been modeled by the Generalized
Extreme Value Distribution (GEV) and exceedances above a threshold by the Generalized Pareto Dis-
tribution (GPD). Identifying how the parameters of these distributions are linked to climatic factors
(natural and anthropogenic forcings) is fundamental to understanding the range of scenarios of future
changes in the frequency and intensity of extreme events (such as heavy precipitation, droughts and high
temperatures) ([135],[153]). The use of Bayesian methods is a natural way of improving the inference
for parameters by combining different complex climatic covariate relationships. Although Monte Carlo
sampling for posterior distributions has already been used for extreme value statistical modeling ([121]),
to our knowledge, perfect sampling ([132]) has not yet been explored to improve the inference quality.
This approach can be also used for Bayesian model selection. Choosing between competing extreme
models greatly facilitates the investigation of causes and predictor variables for extreme events.

Extreme events in hourly precipitation Understanding the risk of flooding and the construction
of flood plain boundaries in an urban area depends on the local climatology of extreme precipitation.
A common statistic for extreme rainfall rates is the return level. In statistical terms, this quantity is a
quantile from a GEV distribution fitted to observed data and so depends on the uncertainty in estimating
this distribution. For a given area the return level is a function of space, season, and other covariates and
its variation needs to be accomodated when used in hydrologic models that determine flood plains. One
area of research would be to combine extreme value theory with spatial models for the tail parameters
and other covariates to produce rigorous estimates of the return levels. A key contribution will be the
propagation of the uncertainty in the extreme value distributions into the final determination of flood
plain boundaries. The Colorado Front Range will be used as a study area because of the proximity of
urban areas to flood prone drainages.

Spatial scaling of extremes A challenge in transferring the results of climate change projections
to tangible societal impacts is relating the spatially averaged meteorological variables simulated by an
AOGCM to their values at a point (e.g. [150]). Current climate models are restricted in their resolution
to grid cells that are 100km to 300km on a side. The statistical problem is to infer the distribution of
point extremes based on the grid cell averages simulated by the model. This question is posed under the
assumption that the climate model yields a perfect simulation, in particular with regard to its capacity
to generate variables with heavy tail distributions. A companion issue is how well (imperfect) climate
projections reproduce the extremes observed in our current climate. Matching extreme distributions
between models and data must be done in a regression (covariate) setting in order to adjust for the
different timing of large-scale variation such as the EL Nino/Southern Oscillation or the North Atlantic
Oscillation. Regardless of the strength of the connection between grid cell average and the climate
at point locations, it is crucial to characterize the uncertainty in this relationship in order to produce
uncertainty estimates when these climate scenarios are subsequently used in impact models.

3.7 Statistical Computing

Bayesian hierarchical models and other related modeling frameworks are rapidly becoming mature and
flexible tools for handling complex geophysical processes. In contrast to the richness of the statistical
methodology, there is a deficit in principles for adapting methods to large and interesting problems.



Geophysics and other areas where data are measured over time and space create a unique set of compu-
tational problems because the statistical models must have a global extent which cannot readily break
into small, independent pieces. The interaction among different components can add greatly to the
computational burden.

Computing for large spatial datasets The theory described in Section 3.1 suggests that delib-
erately introducing sparsity in a covariance matrix through positive definite tapering will not introduce
much error in the spatial estimate. We will couple this idea with the use of fast multiplication of co-
variance matrices to give an algorithm that accomplishes the spatial prediction for large and irregularly
spaced spatial datasets (104 to 105 locations). Part of the efficiency is gained by registering all locations
to a fine spatial grid and taking advantage of the fast Fourier transform or the discrete wavelet transform
for regular arrays of points. (Although each spatial location is discretized to a grid point not all grid
points need to have observations.) Another research topic is the fast simulation of spatial fields on grids
and conditional sampling. The algorithms will build on circulant embedding ideas ([162],[168]) to handle
the simulation of fields with long correlation scales. Finally, some important extensions of this work are
devising approximate likelihoods using sparse methods and dealing with nonstationary covariances using
mixtures of stationary fields or multi-resolution approximations.

Blending near-surface ocean winds A long-term project to test the transfer of Bayesian hi-
erarchical models to a substantial geophysical application is GibbsWinds, a value-added surface wind
dataset for the tropical Indian and western Pacific ocean, based on QSCAT satellite observations and
NCEP reanalysis data ([30]). The goal is to use NCAR’s state-of-the-art massively parallel computing
architecture to tackle a large problem without compromising the integrity of the statistical analysis.
Some areas of research include dividing the computation into manageable chunks without introducing
artifacts, distributing computation among many nodes, and developing strategies for managing the ir-
regular datastreams being ingested by the computational core and the resulting output streams from
the MCMC algorithms.

4 Program structure

The need for close collaboration among scientists and statisticians to vitalize and enrich statistical science
and to make advances on scientific problems is undisputed. Overall we believe that GSP is a successful
model for achieving these goals in the geosciences primarily because of the location at NCAR and support
for distinctly statistical research. In March, 2002 GSP underwent a site review by an independent panel
convened by NSF-Division of Mathematical Sciences. Part of the review panel’s conclusion ([149]) was
“The Panel concurs that, by almost any measure the GSP has been a resounding success ...”. While we
believe the overall structure of GSP is sound, in this proposal we outline two opportunities to broaden
the program to graduate students and young faculty.

The vision for GSP’s future is a small group of permanent NCAR staff with a much larger group of
statistical researchers and students visiting on terms from a few days to semesters to multiple years. A
permanent presence is important for the continuity of long-term projects while an emphasis on visitors
is an efficient model to reach the larger statistical community. The philosophy for GSP is careful
mentoring of young researchers and providing a high level of support for computing and data access.
This is necessary to achieve nontrivial and novel scientific results, gain collaborative experience with
other scientists, and still allow young statistical scientists to build their own research programs. The
following sections outline the composition of GSP and the program to implement its research.

4.1 Program Members

GSP staff The Section Head (Nychka) and a new Scientist (see Section 4.5) will share daily oversight
along with mentoring and project management. Support staff will consist of two Associate Scientists to
provide computing, data, and algorithm support and an Administrative Assistant.

Graduate students Two to four graduate students will be supported in the thesis-in-residence
program that typically lasts an academic semester. In addition, one to three graduate students will



participate in GSP who are based in the local statistics groups: Colorado State University (CSU),
University of Colorado(CU) - Boulder, and CU - Denver.

Postdoctoral Fellows On average, five statistics PFs will be on staggered terms from two to three
years.

Faculty visitors The Statistics Chautauqua program will bring in the largest contemporaneous
number of visitors to GSP and is expected to entail 3-5 faculty members and 3-5 graduate students
and/or statistics post docs from other statistics departments or centers. GSP will also continue to
encourage a regular visiting schedule (e.g. one day each week) by faculty at local statistics groups
(S. Sain CU - Denver, T. Lee and R. Davis CSU, P. Naveau CU - Boulder).

4.2 Thesis-In-Residence for Statistics Ph.D. Students

This program is designed for Ph.D. graduate students who have finished coursework and are researching
and writing dissertations. Our premise is that by taking advantage of the uninterrupted time and
resources at NCAR, the student can incorporate substantial geophysical applications into his/her thesis
work that would be difficult given the usual time and amount of support for thesis research. The goal is
to broaden both the scope and depth of the thesis while minimizing the extra time this might take at the
student’s home department. This will be possible because many of the ongoing GSP projects have obvious
applications for a wide range of statistical methodology. In addition, the GSP facilities for computing
and access to geophysical data are already well-suited for statistical research. The direct benefits to
GSP are the transfer of new statistical methodology to NCAR science projects. Some indirect benefits
are the possibility of recruiting outstanding students as PFs and also entraining the students’ advisers
into longer term collaboration. Graduate student visitors also provide the opportunity of mentoring and
interaction with GSP PFs. While there is no substitute for the student’s thesis adviser, GSP’s focus
on geophysical problems provides a larger group to support the student’s research. GSP has already
successfully hosted several Ph.D. students in this manner including Christian Schoelzel and Christoph
Gebhardt, U. of Bonn (paleoclimate reconstruction) and Barnali Das, U. of Washington (modeling of
nonstationary spatial fields).

This opportunity would be launched with a short article in AMSTAT News and subsequently ad-
vertised there and in the IMS Bulletin. Promising students will also be identified from GSP workshop
participants and through ongoing collaborations with statistics faculty.

4.3 Post Doctoral Fellows

The core of GSP has been a critical mass of three to six statistics PFs on staggered terms ranging from
six months to three years (terms less than two years are due to members securing permanent research and
teaching positions outside of NCAR). Indeed most of the research reported in Section 1 comes from their
efforts. Feedback from past PFs has highlighted the productive interaction and support among colleagues
at the same junior level. Our plan is to continue this kind of group with two modifications: a broader
plan for recruiting promising statistical Ph.D.’s and more flexibility through shared appointments with
other centers and universities.

At the inception of GSP, nearly ten years ago, post doctoral appointments in Statistics were rare and
GSP largely enjoyed an open field in recruitment, especially in the area of geoscience applications. We
must now address maintaining a group of statistics post docs in an environment where competition for
talented post docs is keen and direct entry into tenure-track positions can siphon off some of the best
new graduates.

Increased visibility: We believe that the richness, diversity and societal relevance of the scientific
program at NCAR will always attract some statistical graduates for PF positions. Rather than periodic
notices for positions, GSP will recruit throughout the calendar year with the possibility of attracting
strong students finishing “out of cycle”, e.g. completing a degree in early Fall. Several PFs became
acquainted with GSP/NCAR as students through sponsored workshops and we will continue to use
this activity for visibility and recruitment. Finally, through exposure from the Thesis-in-residence and



Summer Chautauqua programs (outlined below), we expect that promising Ph.D. students will be more
inclined to consider NCAR/GSP post doc opportunities.

Alliances: The PF positions will also emphasize the option to combine the NCAR appointment
with other activities and other institutions. Some examples include:

• Sharing joint post doc positions with other centers (SAMSI, Center for Integrating Statistics and
Environmental Science (CISES), Space-Time Aquatic Resources Modeling and Analysis Program
(STARMAP), Los Alamos National Lab (LANL)).

• Joint appointments or significant visits to other statistics programs (e.g. Colorado State University,
University of North Carolina - Chapel Hill, University of California - Berkeley, and University of
Washington).

• Gaining teaching experience through one of the local statistics groups (CU - Boulder, - Denver
and CSU).

As examples, GSP has already been successful incorporating joint positions with other statistics
departments (Jarrett Barber, 25% NCAR/GSP and 75% Duke U.; Craig Johns, 50% NCAR/GSP and
50% CU - Denver), providing teaching experience within the PF appointment (Reinhard Furrer, CU -
Boulder, 9/02-5/03) and extended visits to statistics departments (Claudia Tebaldi, University of Wash-
ington, 4/00-5/00). Appended are letters of support from these institutions. Some common interests
are filtering and data assimilation (SAMSI, CISES), impacts of climate change (CISES, STARMAP),
analysis of computer experiments (LANL) and statistical computing (CISES, LANL).

4.4 A Statistics Chautauqua

The GSP Statistics Chautauqua program will be a deliberate concentration of visitors to GSP for a
month-long period in the summer. The composition of the visitors will be broad, ranging from statistics
graduate students, to young researchers (e.g. post docs) from other centers and universities, to both
junior and senior statistics faculty. However, the targeted group for this program are young statistics
faculty interested in expanding their research into geophysical applications. The goal is to create a
community environment that facilitates the transfer of statistics to geophysical problems at NCAR and
the engagement of statistical researchers with substantive geophysical problems. The month-long term
of this program recognizes that substantial progress on scientific problems requires some understanding
of the basic science and often the need for several meetings with the scientific team simply to define
the statistical problems. We also recognize that the serendipitous and informal interactions among
researchers in a stimulating professional environment are perhaps the most important way to spur
creative interdisciplinary research. Part of the format of this program is to include tutorial talks on
the scientific background necessary to appreciate geophysical problems. For example, although the
equations describing the dynamics of the atmosphere and ocean are fundamental to the geosciences, few
statisticians are familiar with these concepts. Access to NCAR’s extensive data archives will also be
addressed. Another important component is fostering interaction among the visitors and GSP members
themselves. This includes informal lunchtime seminars on research areas, a reading/discussion group on
articles in a particular area and expository lectures on emerging areas of statistics.

This program will be advertised in the AMSTAT News, the IMS Bulletin and other statistics newslet-
ters. Preference will be given to underrepresented groups in statistics, to young faculty members and to
graduate student/adviser pairs.

4.5 Program Management

Leadership The overall project leadership will come from the GSP Section Head (Doug Nychka), the
four co-PIs, and a new scientist in GSP. The new scientist, supported by this proposal, will be at the
equivalent rank to a university Associate Professor. His/her addition will provide time for both GSP
scientists to manage collaboration between GSP and NCAR initiatives, maintain the continuity of small



projects and serve on NCAR committees. This activity will be new for GSP and is necessary to maximize
the impact of statistical science at NCAR. It is also a reflection of the maturity of GSP moving beyond
a statistics research program into a full-fledged scientific section at NCAR.

Oversight and guidance The program will maintain an external advisory panel consisting of
researchers in statistics and the atmospheric sciences. This advisory group will convene annually to
assess the overall direction of research and the effectiveness of the training components. The format
of this panel meeting is a site visit: review materials are submitted beforehand, all members of GSP
present their work and the panel produces a written report. Current members are:

Peter Guttorp (University of Washington)
Sallie Keller-McNulty (Los Alamos National Laboratory)
Gerald R. North (Texas A&M University)
John Rice (University of California, Berkeley)
Andrew Solow (Woods Hole Oceanographic Institution)
Daniel S. Wilks (Cornell University)
Chris Wikle (University of Missouri)
Brani Vidakovic (Georgia Institute of Technology)

In addition, a GSP internal advisory panel represents the science divisions of NCAR.
Mentoring The roles of GSP permanent staff are purposefully designed to maximize the mentoring

of GSP PFs and visiting students. This is in contrast to more traditional supervision where direction
of a postdoctoral student is an activity typically added to a faculty member’s teaching, research, and
administrative duties. In the past, the GSP project leader has held regular weekly meetings with each
PF and attended most of the meetings between GSP PFs and NCAR scientists. Equally important, it is
expected that the PFs will also get guidance and support from the scientists with whom they collaborate.
We have found that NCAR scientists are generous with their time in working with younger researchers.

Project selection and life cycle Projects selected early in a PF’s term will typically reflect
interests and skills derived from his/her thesis research. However, it is the goal of the program to always
emphasize scientific merit and quality on par with the statistical research supported by NSF-Division of
Mathematical Sciences. We will follow a confidence/challenge approach for the PF’s suite of projects.
Well defined and incremental projects are identified early in the PF’s term to give him/her confidence in
interdisciplinary research and some immediate research products. The next phase is to identify longer-
term projects that carry higher risk but also higher payoff both in statistical methodology and scientific
impact and may involve new areas of statistical expertise.

Nearly every successful project at GSP has its own unique story of inception and of match-making.
However, the presence of GSP as an embedded group within NCAR provides some regular modes for
project identification: attendance of the regular seminars hosted by the scientific divisions and annual
division retreats, interaction with non-statistics post docs and graduate students, the GSP advisory
panels, and the involvement of GSP staff in NCAR strategic initiatives. Any potential project will be
vetted through the co-PIs for its overall value and the quality of mentoring from the involved scientists.
Closing or continuing a project is also based on the established project selection criterion ([129]). These
decisions will involve the external advisory panel and will consider the impact to the overall GSP program.

4.6 Integration Within NCAR

In the past two years NCAR has created Strategic Initiatives that cut across traditional divisional bound-
aries and pursue integrated scientific programs of international prominence. Three NCAR initiatives and
a fourth initiative that is under review are briefly described along with their connections to this proposal.

Weather and Climate Impact Assessment will provide leadership for U.S. participation in
the Intergovernmental Panel on Climate Change and includes characterizing the uncertainties in the
assessment process, understanding the role of extremes in societal impacts, and designing emission
scenarios and climate model experiments. The projects on soils, weather generators, and the sections on
Design and Analysis of Computer Experiments (3.3), and Extremes (3.6) contribute to these goals.



Data assimilation addresses the need for a national program to pursue research on the integration
of geophysical models with observations and to support NCEP and other operational forecasting centers
through technology transfer. The project on forecast errors and the section on Filtering and Data
Assimilation (Section 3.4) provide statistical foundations to this effort and infuse new ideas from the
statistical community.

Biogeosciences recognizes the importance of the biosphere on the Earth System and is focused on
the perturbations to the atmosphere’s chemistry by human activities. Understanding the fluxes of carbon
at the global scale is central to this initiative and the project on inferring CO2 fluxes is a collaborative
effort with scientists in this initiative.

Models and Methods for Multiscale Geophysical Processes (under review) draws on statisti-
cal models, the theory of turbulence, experimental data and numerical models to characterize multiscale
features through stochastic models. The projects on stochastic parameterizations and identifying coher-
ent structures in turbulent flows are part of this initiative.

4.7 Visibility and Outreach

Workshops GSP will cosponsor a workshop broadly related to the interface of statistics and the geo-
sciences at least every other year of the project. Previous GSP workshops have been very successful with
both tutorial- and research-oriented talks and ample time for discussion. Possible future workshop topics
include: Data Assimilation, Design and Analysis of Computer Experiments, Blending Stochastic and
Deterministic models, Scientific Data Mining, Statistics for Large Datastreams, and Relating Climate
to Human Health. Some potential alliances include SAMSI, the PRIMES and STARMAP programs
at CSU, CISES and LANL. Internal to NCAR, GSP will collaborate with the Geophysical Turbulence
Program and the Data Assimilation Initiative on joint workshops and summer schools.

Presentations Program members will present research at statistical meetings and departmental col-
loquia. In particular, the permanent GSP members will regularly visit university statistics departments
to increase awareness of GSP accomplishments and encourage applications to the visitor programs. An
important mode of visibility is through contributed and invited sessions at the Joint Statistical Meetings
(JSM), Interface, the Young Researchers Conference, and other conferences where GSP members present
their current research. An effort will be placed on having at least one session (either special contributed
or invited) every year at JSM that is a venue for GSP research.

Internet resources GSP will maintain an extensive home page (www.cgd.ucar.edu/stats) with
links to technical reports, program members, current projects, software and datasets and other statistical
and geophysical sites. The external version of the homepage will give prominence to the visitor programs.

Statistics software and numerical models The program will make available statistical software
related to GSP projects and participate in the development of at least four important public resources.
The research on spatial models will be implemented in a new spatial analysis package synthesizing the
ideas implemented in the fields and GeoR packages with extensions to large datasets and space-time
models. The wgen weather generator package will also be extended to a spatial context. Research in
extremes will be transferred into the extRemes toolkit including extensions to spatial analysis. The Data
Assimilation Research Testbed (DART) will disseminate a wide range of numerical models and methods
to test ideas of data assimilation.
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[25] R. Gençay, F. Selçuk, and B. Whitcher. An Introduction to Wavelets and Other Filtering Methods
in Finance and Economics. Academic Press, San Diego, September 2001. ISBN: 0-12-279670-5.
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