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• Penalized least squares smoothers

• Properties of smoothers

• Cubic and thin-plate splines

• Cross-validation for finding
the smoothing parameter
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Estimating a curve or surface.

3

An additive statistical model:

Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = g(xi) + εi

εi’s are random errors

and g is an unknown, smooth function.

The goal is to estimate g based
on the observations



A two dimensional example
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Predict surface ozone where it is not monitored.

Ambient daily ozone

in PPB June 16,

1987, US Midwestern

Region.
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Penalized least squares
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Ridge regression
Start with your favorite n basis functions {bk}nk=1 The estimate has

the form

ĝ(x) =
n∑
l=1

βkbk(x)

where β = (β1, . . . , βn) are the coefficients.

Let Xi,k = bk(xi) so ĝ = Xβ̂



Penalized least squares.
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minimize over β:

Sum of squares(β) + penalty on β

min
β

n∑
i=1

(y − [Xβ]i)
2 + λβTHβ

with λ > 0 a hyperparameter and H a nonnegative definite matrix.



In general
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- log likelihood (y,β) + penalty (β)

minimizing this makes sense as an estimate.

Spatial statistics estimates:
the basis ({bk}) and the penalty (H)
based on a spatial covariance.

Bayesian posterior mode:
The penalty can also be a log prior density for β

Once we have the parameter estimates these can be used to evaluate

ĝ at any point.



Solution to the Ridge Regression
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Just calculus ...

• Take derivatives of the penalized likelihood w/r to β,

• set equal to zero,

• solve for β

The monster ...

β̂ = (XTX + λH)−1XTy



The hat matrix for prediction
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ĝ = Xβ̂ = X(XTX + λH)−1XTy = A(λ)y

There is a transformation , G so that

A(λ) = X(XTX + λH)−1XT = (XG)(I + λD)−1(XG)T

( D is diagonal and XG orthogonal)



Linear smoothers
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The vector of predictions:

ĝ =


ĝ(x1)
ĝ(x2)

...
ĝ(xn)

 (1)

The smoother matrix: ĝ = Ay

• A is an n× n matrix
• eigenvalues of A are in the range [0,1].
• ĝ(x) in between the data found by interpolating the
predictions at the observations.
• ||Ay|| ≤ ||y||

For ridge regression (I + λD)−1 is the smoothing function.



Effective degrees of freedom
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For linear regression trace of XT (XTX)−1XT gives the number of

parameters. (Because it is a projection matrix)

By analogy, trA(λ) is measure of the effective degrees of freedom

attributed to the smooth surface

• trA(λ) monotonically increases as λ decreases

• trA(0) = number of basis functions

• trA(∞) = number of basis functions not penalized.

• effective degrees of freedom is a better parametrization than the

smoothing parameter.



The classic cubic smoothing spline
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Splines are the solutions to variational problems.

For curve smoothing in one dimension,

min
f

n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′(x))2dx

The second derivative measures the roughness of the fitted curve.



Form of the solution
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ĝ is continuous and with continuous first and second

derivatives

It is a piecewise, cubic polynomial in between the obser-

vation points.

What does this have to do with ridge regression?



Climate for Colorado
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Elevations Spring average daily max temperatures
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Max/Min spring temperatures
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Cubic splines with different λ s
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Form of the spline estimate
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Estimate =

low dimensional parametric model + general function

Penalty matrix ”hard-wired” to basis functions.

Divide the basis functions into two parts {φj} and {ψk}

and only penalize the second set.

yi =
nt∑
j=1

φj(x)dj + h(xj) + εi



Form (continued)
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ĝ(x) =
nt∑
j=1

φj(x)d̂j +
np∑
k=1

ψk(x)ĉk

Ω derived from {ψk}



In matrix format:
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Ti,J = φj(xi), Kk,i = ψk(xi) and ... Ω = K

ĝ = T d̂ +Kĉ

Find the parameters by the ridge regression:

min
c,d

(y − Td−Kc)T (y − Td−Kc) + λcTKc

Solution:
d̂ = (TTM−1T )−1TTM−1y (GLS)

M = K + λI

ĉ = (KKT + λK)−1(y − T d̂) = (K + λI)−1(y − T d̂)



The cubic smoothing spline
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We just need to define the right basis functions and penalty.

A strange covariance:

k(u, v) =

 u2v/2− u3/6 for u < v

v2u/2− v3/6 for u ≥ v



Friends and strangers
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Friends: φ1(x) = 1 , φ2(x) = x ,

Strangers: ψi(x) = k(x, xi)

The penalty matrix: Ωi,j = k(xi, xj) ,



Why does this work?
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The ridge regression penalty is the same as the integral criterion.

Splines are described by special covariance functions known as re-

producing kernels , k(x, x′) with ψi(x) = k(x, xi) the choice for cubic

splines has the property

∫
ψ
′′
j(x)ψ

′′
i (x)dx = ψj(xi) = k(xi, xj)

so when

h(x) =
∑
j ψjcj and TTc = 0.

∫
(h

′′
(x))2dx =

∫
(

∑
j
ψ
′′
j(x)cj)

2dx = cTKc



A 2-d thin plate smoothing spline
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min
f

n∑
i=1

(yi−fi)2+λ
∫
<2

∂2f

∂2u

2

+2

 ∂2f

∂u∂v

2

+

∂2f

∂2v

2

dudv

Collection of second partials is invariant to a rotation.

Again, separate off the linear part of f .

f(x) = β1 + β2x1 + β3x2 + h(x)

Thin plate spline kernel:

k(x,x′) = ||x− x′||2log(||x− x′||) + linear terms



Estimates for the ozone data
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Choosing λ by Cross-validation
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Sequentially leave each observation out and predict it using the rest

of the data. Find the λ that gives the best out of sample predictions.

Refitting the spline when each data point is omitted, and for a grid

of λ values is computationally demanding.

Fortunately there is a shortcut ...



The magic formula
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residual for g(xi) having omitted yi

(yi − ĝ−i) = (yi − ĝi)/(1−A(λ))i,i

This has a simple form because adding a data pair (xi, ĝ−1) to the

data does not change the estimate.



CV and Generalized CV criterion
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CV (λ)

(1/n)
n∑
i=1

(yi − ĝ−i)
2 = (1/n)

n∑
i=1

(yi − ĝi)
2

(1−A(λ))i,i)2

GCV (λ)

(1/n)

∑n
i=1(yi − ĝi)

2

(1− trA(λ)/n)2

Minimize CV or GCV over λ to determine a good
value



GCV for the ozone data
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GCV( eff. degrees of freedom), the estimated surface



GCV for the climate data
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GCV( eff. degrees of freedom), the estimated curves
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Summary
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We have formulated the curve/surface fitting prob-
lem as penalized least squares.

Splines treat estimating the entire curve but also
have a finite basis related to a covariance function
(reproducing kernel).

One can use CV or GCV to find the smoothing pa-
rameter.



Thank you!
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