Using fields

SAMSI Summer School August, 2009

Douglas Nychka,
National Center for Atmospheric Research
Outline

- Krig function and basic operations
- Covariance functions
- Tps and mKrig

Supported by the National Science Foundation
SAMSI July 2009
Basic arguments are:

\(x \): the matrix of locations (each row is a location)

\(Y \): the vector of observations.

\(Z \): possible covariates.

\(m \): Sets spatial drift to \((m - 1)\) degree polynomial. Default is 2 – linear drift.

\(\lambda \): The smoothing parameter. Default is to find this by GCV.

\(\text{cov.function} \): name of covariance function
Default is \text{stationary.cov}

... Arguments to covariance function. Usually need to put in something.
For example

```r
object<- Krig(x,y, theta=2.0)
object<- Tps( x,y, m=3)
object<- Krig(x,y, theta=350, Distance="rdist.earth")
```
The returned object

object is a list with the information needed to evaluate the function and compute prediction errors.

`predict(object, xnew)` Predictions at new locations in xnew.

`plot(object)` Diagnostic plots of fit.

`summary(object)` Summary of fit.

Also, `predict.se`, `predict.surface`, `predict.se.surface`, `surface`
A simple covariance function for Krig

This is a simple example of the exponential covariance.

\[
\text{Exp.simple.cov} \leftarrow \\
\text{function}(x1, x2, \theta = 1, C = \text{NA}, \text{marginal} = \text{FALSE}) \\
\{ \\
\quad \text{if } (\text{is.na}(C[1]) \& \neg \text{marginal}) \{ \\
\quad\quad \text{return}(\exp(-\text{rdist}(x1, x2)/\theta)) \} \\
\quad \text{if } (!\text{is.na}(C[1])) \{ \\
\quad\quad \text{return}(\exp(-\text{rdist}(x1, x2)/\theta))^{\times C} \} \\
\quad \text{if } (\text{marginal}) \{ \\
\quad\quad \text{return}(\text{rep}(1, \text{nrow}(x1))) \} \\
\} \\
\]

Always has three possible actions.
\(x1, x2, C\) and \text{marginal} are required.
Exp.simple.cov (x1, x2, theta = 1, C = NA, marginal = FALSE)

Computes the cross covariance of the locations in x1 with those in x2 and either:
• returns a matrix
or
• multiplies the matrix by the vector/matrix C.

rdist is a useful function that finds the Euclidean distance matrix between two sets of locations.

theta is the scale parameter for the exponential.
A stationary covariance function

```
stationary.cov ( x1, x2, Covariance = "Exponential",
                 Distance = "rdist", Dist.args = NULL, theta = 1,
                 C = NA, marginal = FALSE, ...)
```

Fitting a Matern: $\nu = 1.5, \theta = 350$ Using great circle distance.

```
object<- Krig( x,y, Covariance="Matern",
               nu= 1.5, theta=350, Distance="rdist.earth")
```

What about λ?

`lambda` will still be found by GCV and is equivalent to finding the nugget variance by GCV.
Tps — it is just a wrapper around Krig

```
Tps (x, Y, m = NULL, p = NULL, scale.type = "range", ...) {
  x <- as.matrix(x)
  d <- ncol(x)
  if (is.null(p)) {
    if (is.null(m)) {
      m <- max(c(2, ceiling(d/2 + 0.1)))
    }
    p <- (2 * m - d)
  }
  ....
  Krig( x, Y, cov.function = Rad.cov, m = m,
       scale.type = scale.type, GCV = TRUE,
       p = p, ...)
}
```

Returned object is just a specific call to Krig!
The depths of mKrig

an edited version and after setting up the data ...

Tmatrix <- fields.mkpoly(x, m)
tempM <- do.call(cov.function, c(cov.args, list(x1 = x, x2 = x)))
diag(tempM) <- (lambda/weights) + diag(tempM)

Mc <- do.call("chol", c(list(x = tempM), chol.args))
VT <- forwardsolve(Mc, x = Tmatrix, transpose = TRUE,
 upper.tri = TRUE)
qr.VT <- qr(VT)
d.coef <- qr.coef(qr.VT,
 forwardsolve(Mc, transpose = TRUE, y, upper.tri = TRUE))

c.coef <- forwardsolve(Mc, transpose = TRUE,
 y - Tmatrix %*% d.coef, upper.tri = TRUE)
c.coef <- backsolve(Mc, c.coef)

.... now find residuals etc. and return object.
Some closing remarks

- Easy to get quick summaries, predictions and plots.

- Many comments throughout source code and consistent notation.

- Covariance function is very flexible

- Linear algebra can easily be overloaded to handle sparse matrices.