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• Restricted maximum likelihood

• Tapering a covariance

Supported by the National Science Foundation SAMSI July 2009



The spatial model
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Given n pairs of observations (xi, yi), i = 1, . . . , n

yi = [Td]i + h(xi) + εi

εi’s are random errors.

ε are MN(0, σ2I)

h(x) is a realization of a Gaussian process

E(h(x)) = 0 and COV (h(x), h(x′)) = ρkθ(x, x′)

In vector notation:

y = Td + h + ε

ρK(θ) is the covariance matrix for h.



The likelihood
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- 2 log likelihood:

(y − Td)T (M)−1(y − Td) + log(|M |) + c

M = ρK(θ) + σ2I and c is a constant.

Eliminate fixed part

Choose U an orthogonal matrix so that UTT = 0

UTy = UTh + UTε

Restricted likelihood

(y∗)T (M∗)−1(y∗) + log(|M∗|) + c

y∗ = UTy and M∗ = UTMU



Linear algebra for the likelihood
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Cholesky decomposition of M∗:

M∗ = CTC where C is an upper triangular matrix.

Quadratic Form:

(y∗)T (M∗)−1(y∗) = (y∗)T (CTC)−1(y∗)

= (y∗)TC−1C−T (y∗) = ||C−Ty∗||2

solve the linear system CTw = y∗.
so (y∗)T (M∗)−1(y∗) = ||w||2

For the determinant: |M∗| = |CTC| = |C|2

Determinant of an upper triangular matrix is the product of the
diagonal elements.



Maximizing the likelihood
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• All these computations need to be done for a single

evaluation. and are order n3. Although the Cholesky

decomposition and solution are faster that a full matrix

inversion.

• Difficult to find the derivatives of the likelihood al-

though it can be concentrated about σ or ρ

Maximum likelihood estimates are usually not feasible be-
yond about 1000 observations.



Alternatives:
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• If replicates are available can fit a correlogram using

nonlinear regression. This tends to have more variance.

• Use a compact covariance or tapering to make M a
sparse matrix.



Tapering
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- 2 log likelihood:

(y − Td)T (M)−1(y − Td) + log(|M |) + c

tr
(
(M)−1(y − Td)(y − Td)T

)
+ log(|M |) + c

Mi,j = ρk(xi, xj) + σ2

The idea is to introduce many zeroes into this matrix.

w(u, v) a covariance that is zero if ||u − v|| > ∆



Tapered version of covariance
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Replace: k(xi, xj)

with k(xi, xj)w(xi, xj)

Covariances with locations with distance larger than ∆ will zero!

The one taper -2 log likelihood:

(y − Td)T (M · W )−1(y − Td) + log(|M · W |) + c

[M · W ]i,j = k(xi, xj)w(xi, xj)
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The two tapered -2 log likelihood:

Also taper the matrix (y − Td)(y − Td)T in the same way

tr([M · W ]−1[(y − Td)(y − Td)T · W ]) + log(|M · W |) + c

This will tend to give less biased estimates than the one taper.



Some closing remarks
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• The likelihood can be simplified by eliminating the fixed part.

• Cholesky decompositions lead to efficient methods for evaluating

the likelihood.

• Tapering can substantially reduce the amount of computation

by introducing sparse covariance matrices.


