Covariance functions

SAMSI Summer School August, 2009

Douglas Nychka,
National Center for Atmospheric Research.

Outline

- Restricted maximum likelihood
- Tapering a covariance

Supported by the National Science Foundation

The spatial model

Given n pairs of observations $\left(x_{i}, y_{i}\right), i=1, \ldots, n$

$$
y_{i}=[T \boldsymbol{d}]_{i}+h\left(x_{i}\right)+\epsilon_{i}
$$

ϵ_{i} 's are random errors.
$\boldsymbol{\epsilon}$ are $M N\left(0, \sigma^{2} I\right)$
$h(x)$ is a realization of a Gaussian process $E(h(x))=0$ and $\operatorname{COV}\left(h(x), h\left(x^{\prime}\right)\right)=\rho k_{\theta}\left(x, x^{\prime}\right)$

In vector notation:

$$
y=T d+h+\epsilon
$$

$\rho K(\theta)$ is the covariance matrix for \boldsymbol{h}.

The likelihood

- 2 log likelihood:

$$
(\boldsymbol{y}-T \boldsymbol{d})^{T}(M)^{-1}(\boldsymbol{y}-T \boldsymbol{d})+\log (|M|)+c
$$

$M=\rho K(\theta)+\sigma^{2} I$ and c is a constant.
Eliminate fixed part
Choose U an orthogonal matrix so that $U^{T} T=0$

$$
U^{T} \boldsymbol{y}=U^{T} \boldsymbol{h}+U^{T} \boldsymbol{\epsilon}
$$

Restricted likelihood

$$
\begin{aligned}
& \quad\left(\boldsymbol{y}^{*}\right)^{T}\left(M^{*}\right)^{-1}\left(\boldsymbol{y}^{*}\right)+\log \left(\left|M^{*}\right|\right)+c \\
& \boldsymbol{y}^{*}=U^{T} \boldsymbol{y} \text { and } M^{*}=U^{T} M U
\end{aligned}
$$

Linear algebra for the likelihood

Cholesky decomposition of M^{*} :
$M^{*}=C^{T} C$ where C is an upper triangular matrix.

Quadratic Form:
$\left(\boldsymbol{y}^{*}\right)^{T}\left(M^{*}\right)^{-1}\left(\boldsymbol{y}^{*}\right)=\left(\boldsymbol{y}^{*}\right)^{T}\left(C^{T} C\right)^{-1}\left(\boldsymbol{y}^{*}\right)$

$$
=\left(\boldsymbol{y}^{*}\right)^{T} C^{-1} C^{-T}\left(\boldsymbol{y}^{*}\right)=\left\|C^{-T} \boldsymbol{y}^{*}\right\|^{2}
$$

solve the linear system $C^{T} \boldsymbol{w}=\boldsymbol{y}^{*}$.
so $\left(\boldsymbol{y}^{*}\right)^{T}\left(M^{*}\right)^{-1}\left(\boldsymbol{y}^{*}\right)=\|\boldsymbol{w}\|^{2}$
For the determinant: $\left|M^{*}\right|=\left|C^{T} C\right|=|C|^{2}$
Determinant of an upper triangular matrix is the product of the diagonal elements.

Maximizing the likelihood

- All these computations need to be done for a single evaluation. and are order n^{3}. Although the Cholesky decomposition and solution are faster that a full matrix inversion.
- Difficult to find the derivatives of the likelihood although it can be concentrated about σ or ρ

Maximum likelihood estimates are usually not feasible beyond about 1000 observations.

Alternatives:

- If replicates are available can fit a correlogram using nonlinear regression. This tends to have more variance.
- Use a compact covariance or tapering to make M a sparse matrix.

Tapering

- 2 log likelihood:

$$
\begin{gathered}
(\boldsymbol{y}-T \boldsymbol{d})^{T}(M)^{-1}(\boldsymbol{y}-T \boldsymbol{d})+\log (|M|)+c \\
\operatorname{tr}\left((M)^{-1}(\boldsymbol{y}-T \boldsymbol{d})(\boldsymbol{y}-T \boldsymbol{d})^{T}\right)+\log (|M|)+c \\
M_{i, j}=\rho k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)+\sigma^{2}
\end{gathered}
$$

The idea is to introduce many zeroes into this matrix. $w(u, v)$ a covariance that is zero if $\|u-v\|>\Delta$

Tapered version of covariance

Replace: $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$
with $k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) w\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$
Covariances with locations with distance larger than Δ will zero!

The one taper-2 log likelihood:

$$
(\boldsymbol{y}-T \boldsymbol{d})^{T}(M \cdot W)^{-1}(\boldsymbol{y}-T \boldsymbol{d})+\log (|M \cdot W|)+c
$$

$[M \cdot W]_{i, j}=k\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right) w\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$

The two tapered -2 log likelihood:
Also taper the matrix $(\boldsymbol{y}-T \boldsymbol{d})(\boldsymbol{y}-T \boldsymbol{d})^{T}$ in the same way

$$
\operatorname{tr}\left([M \cdot W]^{-1}\left[(\boldsymbol{y}-T \boldsymbol{d})(\boldsymbol{y}-T \boldsymbol{d})^{T} \cdot W\right]\right)+\log (|M \cdot W|)+c
$$

This will tend to give less biased estimates than the one taper.

Some closing remarks

- The likelihood can be simplified by eliminating the fixed part.
- Cholesky decompositions lead to efficient methods for evaluating the likelihood.
- Tapering can substantially reduce the amount of computation by introducing sparse covariance matrices.

