Covariance functions

SAMSI Summer School August, 2009

Douglas Nychka,

C. L. Longer College Barrist

National Center for Atmospheric Research

Outline

• Restricted maximum likelihood

• Tapering a covariance

Supported by the National Science Foundation SAMSI July 2009

The spatial model

Given n pairs of observations (x_i, y_i) , $i = 1, \ldots, n$

$$y_i = [Td]_i + h(x_i) + \epsilon_i$$

 ϵ_i 's are random errors.

 ϵ are $MN(0, \sigma^2 I)$

h(x) is a realization of a Gaussian process E(h(x)) = 0 and $COV(h(x), h(x')) = \rho k_{\theta}(x, x')$

In vector notation:

$$y = Td + h + \epsilon$$

 $\rho K(\theta)$ is the covariance matrix for **h**.

The likelihood

- 2 log likelihood:

$$(y - Td)^{T}(M)^{-1}(y - Td) + log(|M|) + c$$

 $M = \rho K(\theta) + \sigma^2 I$ and c is a constant.

Eliminate fixed part

Choose U an orthogonal matrix so that $U^T T = 0$ $U^T y = U^T h + U^T \epsilon$

Restricted likelihood

 $(y^*)^T (M^*)^{-1} (y^*) + log(|M^*|) + c$ $y^* = U^T y$ and $M^* = U^T M U$

Linear algebra for the likelihood

Cholesky decomposition of M^* :

 $M^* = C^T C$ where C is an upper triangular matrix.

Quadratic Form:

$$(y^*)^T (M^*)^{-1} (y^*) = (y^*)^T (C^T C)^{-1} (y^*)$$
$$= (y^*)^T C^{-1} C^{-T} (y^*) = ||C^{-T} y^*||^2$$

solve the linear system $C^T w = y^*$. so $(y^*)^T (M^*)^{-1} (y^*) = ||w||^2$

For the determinant: $|M^*| = |C^T C| = |C|^2$

Determinant of an upper triangular matrix is the product of the diagonal elements.

Maximizing the likelihood

• All these computations need to be done for a single evaluation. and are order n^3 . Although the Cholesky decomposition and solution are faster that a full matrix inversion.

• Difficult to find the derivatives of the likelihood although it can be concentrated about σ or ρ

Maximum likelihood estimates are usually not feasible beyond about 1000 observations.

Alternatives:

• If replicates are available can fit a correlogram using nonlinear regression. This tends to have more variance.

• Use a compact covariance or tapering to make M a sparse matrix.

Tapering

- 2 log likelihood:

$$(\boldsymbol{y} - T\boldsymbol{d})^T (M)^{-1} (\boldsymbol{y} - T\boldsymbol{d}) + log(|M|) + c$$

 $tr\left((M)^{-1} (\boldsymbol{y} - T\boldsymbol{d}) (\boldsymbol{y} - T\boldsymbol{d})^T\right) + log(|M|) + c$

$$M_{i,j} = \rho k(x_i, x_j) + \sigma^2$$

The idea is to introduce many zeroes into this matrix.

w(u,v) a covariance that is zero if $||u-v|| > \Delta$

Tapered version of covariance

Replace: $k(x_i, x_j)$

with $k(\pmb{x}_i,\pmb{x}_j)w(\pmb{x}_i,\pmb{x}_j)$

Covariances with locations with distance larger than Δ will zero!

The one taper -2 log likelihood: $(y - Td)^T (M \cdot W)^{-1} (y - Td) + log(|M \cdot W|) + c$ $[M \cdot W]_{i,j} = k(x_i, x_j) w(x_i, x_j)$

The two tapered -2 log likelihood:

Also taper the matrix $(y - Td)(y - Td)^T$ in the same way $tr([M \cdot W]^{-1}[(y - Td)(y - Td)^T \cdot W]) + log(|M \cdot W|) + c$

This will tend to give less biased estimates than the one taper.

Some closing remarks

- The likelihood can be simplified by eliminating the fixed part.
- Cholesky decompositions lead to efficient methods for evaluating the likelihood.
- Tapering can substantially reduce the amount of computation by introducing sparse covariance matrices.