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Covariance Matrices in Climate Research [

Zwiers and Von Storch (1999), Statistical analysis in climate

research.

e Empirical Orthogonal Functions(EOF) aka principal

components.

e Xi,...,X, : p dimensional stationary vector time series.
e e.g. Zwiers and Von Storch (1999) Chapter 13. sea surface
monthly
e Average anomaly (107 years, 5° x 5° grid, 360° latitude, 100°
longitude)
o p=72x20= 1440, n =107



Covariance Matrices in Climate Research I1

Xy ={X(i,j) : i=latitude, j = longitude}
Xpp = (XT,...,XT)"
E(X)=0
P
T = Var(X) = E (XXT) = 3" Neje]
j=1
ej,...,ep : Principal components.

A1 > ---> A, : Eigenvalues.

Goal : Estimate, interpret ej, j=1,..., K
K o\,
such that Jpzl ! large.

j=1"



Covariance Matrices in Climate Research I11

G. R. Markowski and G. R. North
Journal ot Hydrometeorology (2003).
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Example : National Centre for Atmospheric Research I

e Computer model

LT

e X; = ave. “pressure”, “temperature” ... in

50km x 50km x variable block of atmosphere, |J| < 107,

computer model.
(] X,':X(t,') i=1,...,T.
e Theory and practice suggest that X;(t;) and Xi(t;) essentially

independent if blocks j and k are far from each other.



FExample : National Centre for Atmospheric Research I

e Data assimilation

e Y(t;) : Data vectors.
e Ensemble: XJU(t), 1<j<n
e Data assimilated : Xf(t), 1<j < nuses ¥ 1 as estimate of

true [Var(X{’)r1 for Kalman gain.



Pathologies of empirical covariance matriz

Observe Xi,...,X,, i.i.d. p-variate random variables

S=-Y (X -X) (X -X)"

MLE, for Gaussian unbiased (almost), well-behaved (and well
studied) for fixed p, n — oo. But very noisy if p is large.

Singular if p > n, so 31is not uniquely defined.

Computational issues with 1 for large p.

LDA completely breaks down if p/n — oo

Eigenstructure inconsistent as soon as p/n — ¢ > 0.



FEigenvalues

Description of spreading phenomenon:

Empirical distribution function: for eigenvalues {f;}j‘.’zl
Go(t) = P 0y < £} — G(1) o g(t)d.

Martenko-Pastur, (67), For A ~ W,y(n,1) p/n—~

For X =1,
by —t)(t— b_
gMP(t) — ( + 5 )( )’
Tyt
by = (1£7) D
05 5 2\25 3




Eigenvectors

D.Paul (2006) For the spike model

A O --- 0
_ 01 --- 0
Y =diag(\,1,...,1) = JI<A<I+ /7,
0
0 1

Eigenvector & < 3\ e )\,

le— &[> 252



An Orthogonal Factor Model

o Model : Xq,...,X, iid. N(u, ).
M
2 =30+ Uzlp, where Yo = Z/\JBJOj

j=1

and A\; > ... > Ay >0, {6} orthonormal.

e Equivalent :

M
X,':,U,—FZ \/AJ'VJ','HJ'—I—O'Z,', i=1,...,n, v ~ i.i.d. N(O,l)
=1



Sparsity in EOF

e p, n large but,
(i) M small fixed.
(i1) 6; “sparse”
 “well approximated” by 0, ||0js]|, < s, s “small”.

|lvjs|l = # of nonzero coordinates of v.



Sparsity I1

e Label dependent not directly related to eigenstructure of
covariance matrix.
o If X = [loyll,
e |ojj| small (effectively 0) for |i — j| large

e More generally, given metric m on J,

ojj| small if m(i, j) large

e 0 =0= X; L X; under Gaussianity.



Eramples

(i) X stationary o(i,j) = o(|i — j|)
> spectral density f, 0 <e < f < % < 00
e Ergodic ARMA processes satisfy
(ii)) T=S+K—>X=Y+Z
Y,Z independent, S < Y, K — Z, S = [s(i — j)] as in (i),
K Hilbert-Schmidt:

Z K2(i,j) < 00 (Zm -0, non stationary)
i

(i) = 252(0 < 00



Sparsity II1 of inverse covariance matrix

If 2t = [|o7]],
e 0| =0 for "many” (i,j) pairs if |i — j| is large.

Implication:

oi=0=X; L Xi | { Xk : k #1i,j} for Gaussian case.



Sparsity IV

e Permutation invariant sparsities
a) Each row of X sparse or sparsely approximable
e.g. |f0',' = {0’,'71' 01 S_j < p}, ||O’,’||0 <s
b) Each row of X1 sparsely approximable.
e a) roughly implies b) if Apin(X) > 6 > 0.
e The graph with edge weight between i and j given by oj; (or

o) is “sparse”in some suitable sense (El Karoui (2007)).



Graphical models

Meinshausen and Buhlmann (2006), Zhao and Yu (2006),
Wainwright (2006), Kalisch and Buhlmann (2007)

¥ 1 corresponds to a graphical model.

N()={j: ol #0,j#i}

Goal : Determine N(i) i=1,...,p.

Example : Gene networks.



Regularization of X by banding or tapering I
Bickel and Levina (2004,2006), Furrer and Bergtsson (2006)

o Replace 3 with 3 % R, where % means Schur (element-wise) product

e If R is positive definite, so is S xR

Examples:

o Banding(not positive definite):
Rie(i,j) = 1(li = jl < k)
e “Triangular” filter: banded, positive definite

ri = (1474

e “Exponential” filter: positive definite but not banded

li—j|

Ro(isj)=e =

— p\i*j\



Thresholding

o M= |[|mj|
o Te(M) = [[m1(|my| = t)]|
e Not positive definite in general

e permutation invariant



The importance of b operator norm analysis

e Matrix norms

M = ”mUHPXP
P

Xr = Y Il x =0 xp)
j=1

e Operator norms
1MIl(r,s)

1/2
IMllo2)y = Ada(MMT)

p
IMll11y = max > |mj]
S

Il

3
5]
X
—N
x| =
S|
w0
x
S
o
—

P
Moy = max> ||
j=1



The importance of b operator norm analysis
e Other norms

IMlloo = max|mj

M3 = Zm : Frobenius norm

e Which to use?
¢ ||M||s : Easiest.
But doesn't imply eigenstructures of inverses close.
* ||M]|(2,2) Does but hard to analyze.
e ||[M]]2 > |[M]|(2,2) But too big.
M2 = p, [ll22) =1



Properties

e For any operator norm,
IABI| < [|A[[l|B]|

Henceforth, [[M||(22) = |[M]|.

o If Mpxp is symmetric,

IMI] = max {| A2

}

A

1/2
o IMI] < [11Ml]12) 1Ml o.ocp] 2
If M is symmetric, [|[M[| < [[M[(1,1)-



Basic results 1

|

Given Ap, B, symmetric ||A, — By|| — 0,

suppose A1(Bn) > X2(By) > -+ > A(Bn) > Aet+1(Bn)

and define \;(A,) analogously.

Suppose Ajy1(Bn) < Aj(Bn) — A, 1 <<k

Dimension B, arbitrary, k, A > 0 fixed.

Then,
@) Pi(An) = Ai(Ba)| = O(AUD[|A, — Byll)
b) If Eja respectively Ejg is projection operator onto eigenspace

corresponding to Aj, then

lIEia — Eigll = O(A™||An — Ball)



Basic results 11

NB:

If \j(An) < ejna Eigenvector
B, < €inB

We have
ejna — €jng| = O(A™||An — Bll)



B-L (2006) Main Result I

Banded estimator : . .

Let
Z/I(Eo,a, C) = {Z 10<eg < /\min(z) < /\max(z) < 1/507

mjaxzi:{|UU| t|i—j| >k} < Ck™ for all k >0}.

1
If X is Gaussian and k, < (nfl Iogp) 2(e+1) then, uniformly on X € U(eo, @, C),

1£4,p = Zoll = Op ((n log p) ™) = |1£2, - ;7

The banded estimator and its inverse are consistent if k’% —0

Amin > €0 not needed if only convergence in || - || to X is needed.



Choosing the “banding” parameter

Ideally want to minimize risk
R(k) = E||Zx - |

Estimate via a resampling scheme:

e Split the data into two samples of size ny, ny, N times at random
o Let )AZ(IV), fg") be the two sample covariance matrices from the v-th split. The

risk can be estimated by

N
~ 1 & (v & (v
R(K) = 5 2 1)~ 557
v=1

e We used n; = n/3, N =50, and the L; matrix norm instead of L.



Stmulation examples: banding 5

e Tridiagonal X (covariance of MA(1)): always pick k = 1.
e Covariance of AR(1): X e U

i
o = p‘ Jl

n =100, p =10, 100, 200, p = 0.1, 0.5, 0.9.

e Fractional Gaussian noise (FGN): long-range dependence, not in U

oy = 5 [ =4l + 12 =20 = 2 + (17 = | = )]

N =

H € [0.5,1] is the Hurst parameter
H = 0.5 is white noise; H = 1 is perfect dependence
n =100, p = 10, 100, 200, H = 0.5, 0.6, 0.7, 0.8, 0.9.



True and estimated risk for AR(1)
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Ratio of optimal k to p for FGN
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e The optimal amount of regularization is model dependent

e The same model requires more regularization in higher dimensions



Effect of banding on PCA

e Model: X; ~ N,(0,%), n =100, p = 100.
o ¥ =Y + diag(2\max(Z0), 0, . .., 0), [Xo]; = pl' I, p=05

Eigenvalue

True eigenvalues

o 20 40 60 80 100
Eigenvalue Number



Estimation results for 1st principal component

N — N\ | cos(&1, e1)|

Estimated — True largest eigenvalue
o

-

I3 I3 s o ©° 3
= @ S 8 © o ©
3 &3 o 8 ® 8 8

o
=3
®

Abs. value of cosine between estimated and true 1st PC

— Banded
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Banded
Sample

o
@
B

20 40 60 80 100

e Resampling procedure picks k = 2.




El Karout (2007) in progress

e Given ¥, p x p covariance matrix, compute adjacency matrix A, = 15(; j)20

e Associate graph G, to it

e Consider Cp(k) = {closed paths of length k on the graph with adjacency matrix Ay}
and ¢p(k) = |Cp(k)| = trace (A;;) .

Call sequence of X, 3-sparse if
Vk € 2N, ¢p(k) < f(k)p =+

where f(k) independent of pand 0 < < 1

Connection between closed paths and trace(K)



Examples : Computation of sparsity coefficients

e Diagonal matrix : A, =1d,. ¢(k) = p, for all k. Sparsity
coefficient: 0.

e Matrices with at most M non-zero elements on each line
#(k) < pM*=1. Sparsity coefficient: 0.

e Matrices with at most Mp® non-zero elements on each

line (k) < Mk—1) pp(k=1) Sparsity coefficient: o



Assumptions underlying results

In all that follows,
e > ,(i,i) stay bounded
e X;; have infinitely many moments
e Rows of (n x p) data matrix X i.i.d

* p/n—1€(0,00)



Simple case: gap in entries of covariance matrix
Gaussian MLE, centered case
e Suppose X, (-sparse, J =1/2 —1n and n >0

o ifo(i,j) #0, [o(i,j)] > Cn, 0 < ag=1/2— 6 < 1/2

e X centered

Theorem

Let
1 n
_ !
5,,_;§' 1xx
=

To(Sp)= thresholded version of S, at level Cn™® with & =1/2 — § > ag. Then,

|| Ta(Sp) — Xplll2 — 0 as .



Beyond truly sparse matrices

Approzimation by sparse matrices

How does thresholding perform on matrices approximated by sparse matrices?

e Suppose 3T, (X,) = ip, (3-sparse.
* Suppose |||, — Tpl[[2 — 0.
e Suppose Jag < a1 < 1/2 — g such that adjacency matrix of (i,)'s such that

Cn~ < |o(i,j)| < Cn= is y-sparse, v < ag — Co, o > 0.

proposition

Then conclusions of all the theorems above apply: for « € (a, 1),

11 Ta(Sp) — Xplll2 — 0 as .



A review of methods: some practiced I

1. ¥ = &% + BJ, (Ledoit, Wolf (2003))
e Reasonable in some practice
e No good theory

o Useless for eigenstructure

(i) Sparse PCA, (Johnstone, Lu (2006))

(7i) Supervised PCA, (Baird, Hastie, Paul, Tibshirani (2007)),
(Paul (2007))
To be discussed(?)



A review of methods: some practiced I1

3. Regularizing the inverse
(i) “Banding”
a) Wu, Pourahmadi (2003)
b) Bickel, Levina (2007)
(ii) “Lasso”
a) Huang, Liu,Pourahmadi, Liu (2006)
b) M. Yuan (2007)
(1), (i)
a) Not permutation invariant

b) T = argmin tr( T)A:) — log(det(T)) + 2\ E [tii]
T —
i#j



A review of methods: some practiced 111

/4. Graphical models
e Meinshausen and Buhlmann (2006)
e Meinshausen and Yu (2006)
Wainwright (2006)
Kalisch and Buhlmann (2007)
Zhao and Yu (2006)



Some important directions

Choice of k or other regularization parameters.
Canonical correlation regularized estimation.
Independent component analysis regularization.

Estimation of parameters governing independence and

conditional independence in graphical models.



Some very in progress results I

Bickel and Levina (2007)

Theorem 1
Suppose ¥ € {HUUH : maxz lojj|? < C}, 0<g<l.
I

. lo
Then, in the Gaussian case, if t, < M gp,

|

r(£) x| < (22) "




Some very in progress results 11

theorem 2

Let ¥ € < [ojll 1 0 < 20 < Amin(E) < Amax(E) < 551, D 10y #0) < }

i#j
R = ’ ojj [U,-,-ajj]fl/zH
S = Diag(oi)
fA? = ) 5’,‘/[6‘,‘,‘5’1'/‘]71/2”
5 = Diag (6;)

$1 = 57

argmln{ r(RT) —log|T|+ A tj}

i#i

\il
Il

Then, in the Gaussian or SubGaussian case,
. 1/2
7= -0 (2422)")
n

NB : s can be as large as (5)



