Spatial Patterns of Probablistic Temperature Change Projections

IMAGe ToYII, 05/07/07

Reinhard Furrer

We present probabilistic projections for spatial patterns of future temperature change using a hierarchical Bayesian model.

Collaboration with: Reto Knutti - ETHZ

Stephan Sain, Doug Nychka, Claudia Tebaldi, Jerry Meehl, Linda Mearns, ... - NCAR

Outline of the Talk

- Climate projection data
- A simple hierarchical Bayesian model
- Presenting uncertainty results
- Model extensions
- Conclusion

Study Climate

 \mathbf{O}

Study Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

Numerical models that calculate the detailed large-scale motions of the atmosphere or the ocean explicitly from hydrodynamical equations.

Study Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

Study Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

CCSM3 DJF temperature change 2080-2100 vs 1980-2000

Example: Atmospheric Model

Input

Output

- External forcings (radiation, volcanos,...)
- Anthropogenic forcings (GHG, aerosols,...)
- Initial conditions
 - Flow dynamics, PDEs
 - Discretization and simplifications
- Parametrization

• Temperature and precipitation

• Pressure, wind, ...

Models Do Not Agree

Model ID, Vintage	Sponsor(s), Country	<u>Atmosphere</u> Top Resolutionª References	<u>Ocean</u> Resolution ^ь Z Coord., Top BC References	Sea Ice Dynamics, Leads References no rheology or leads Xu et al., 2005 rheology, leads Hibler, 1979; Harder, 1996			<u>Coupling</u> Flux Adju Referenc	<u>Land</u> Soil, Refei	l Plants, F rences	Routing							
1: BCC-CM1, 2005	Beijing Climate Center, China	top = 25 hPa T63 (1.9° x 1.9°) L16 Dong et al., 2000; CSMD, 2005; Xu et al., 2005	1.9° x 1.9° L30 depth, free surface Jin et al., 1999				heat, mor Yu and Zł 2000; CSMD, 20	layers, canopy, routing CSMD, 2005 Layers, canopy, routing Mahfouf et al., 1995; Douville et al., 1995; Oki and Sud, 1998									
2: BCCR-BCM2.0, 2005	Bjerknes Centre for Climate Research, Norway	top = 10 hPa T63 (1.9° x 1.9°) L31 Déqué et al., 1994	0.5°–1.5° x 1.5° L35 density, free surface Bleck et al., 1992				no adjust Furevik et					Source: AR4.					
3: CCSM3, 2005	National Center for Atmospheric Research, USA	top = 2.2 hPa T85 (1.4° x 1.4°) L26 Collins et al., 2004	0.3°-1° x 1° L40 depth, free surface Smith and Gent, 2002	rheology, Briegleb e	leads et al., 200)4	no adjustments layers Collins et al., 2006 Bran			ayers, canopy, routing Oleson et al., 2004; Branstetter, 2001			IPCC				
4: CGCM3.1(T47), 2005 Ca	Canadian Centre for Climate - Modelling and Analysis, Canada	top = 1 hPa T47 (~2.8° x 2.8°) L31 McFarlane et al., 1992; Flato. 2005	1.9° x 1.9° L29 depth, rigid lid Pacanowski et al.,	rheology, leads Hibler, 1979; Flato and Hibler. 1992 Flato, 2005				layers Verse	s, canopy ghy et al	y, routing I., 1993							
5: CGCM3.1(T63), 2005		top = 1 hPa T63 (~1.9° x 1.9°) L31 McFarlane et al., 1992; Flato 2005	Model	F							Forcin	orcing Agents					
				Greenhouse Gases					Aerosols								
			_				Jeric	leric				rbon			t	ect	
6: CNRM-CM3, 2004	Météo-France/Centre National de Recherches Météorologiques, France	top = 0.05 hPa T63 (~1.9° x 1.9°) L45 Déqué et al., 1994		co ₂	CH₄	N ₂ O	Stratospl Ozone	Tropospł Ozone	CFCs	SO₄	Urban	Black ca	Organic carbon	Nitrate	1st Indire	2nd Indir	Dust
7: CSIRO-MK3.0, 2001	Commonwealth Scientific and Industrial Research Organisation (CSIRO) Atmospheric Research, Australia	top = 4.5 hPa T63 (~1.9° x 1.9°) L18 Gordon et al., 2002	BCC-CM1	Y	Y	Y	Y	С	4	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
			BCCR-BCM2.0	1	1	1	С	С	1	2	С	n.a.	n.a.	n.a.	n.a.	n.a.	С
			CCSM3	4	4	4	4	4	4	4	n.a.	4	4	n.a.	n.a.	n.a.	Y
			CGCM3.1(T47)	Y	Y	Y	С	С	Υ	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	С
8: ECHAM5/MPI-OM, 2005	Max Planck Institute for Meteorology, Germany	top = 10 hPa T63 (~1.9° x 1.9°) L31 Roeckner et al., 2003	CGCM3.1(T63)	Y	Y	Y	С	С	Υ	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	С
			CNRM-CM3	1	1	1	Y	Υ	1	2	С	n.a.	n.a.	n.a.	n.a.	n.a.	С
			CSIRO-MK3.0	Y	Е	E	Y	Υ	Е	Y	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
9: ECHO-G, 1999	Meteorological Institute of the University of Bonn, Meteorological Research Institute of the Korea Meteorological Administration (KMA), and Model and Data Group, Germany/Korea	top = 10 hPa T30 (~3.9° x 3.9°) L19 Roeckner et al., 1996	ECHAM5/MPI-OM	1	1	1	Y	С	1	2	n.a.	n.a.	n.a.	n.a.	Y	n.a.	n.a.
			ECHO-G	1	1	1	С	Y	1	6	n.a.	n.a.	n.a.	n.a.	Y	n.a.	n.a.
			FGOALS-g1.0	4	4	4	С	С	4	4	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
			GFDL-CM2.0	Y	Y	Y	Y	Y	Y	Y	n.a.	Y	Y	n.a.	n.a.	n.a.	С
			GFDL-CM2.1	Y	Y	Y	Y	Y	Y	Y	n.a.	Y	Y	n.a.	n.a.	n.a.	С
and the second			GISS-AOM	5	5	5	C	C	5	2	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.

0-2

Models Do Not Agree

CCSM3 DJF temp change difference to sample mean (21 models)

Models Do Not Agree

Source: AR4, IPCC

Quantifying Uncertainty

Variability of global temperature increase across 16 models.
 MAGICC/SCENGEN program (Wigley, 2001, 2003).

Quantifying Uncertainty

- Variability of global temperature increase across 16 models.
 MAGICC/SCENGEN program (Wigley, 2001, 2003).
- Probabilistic description of regional climate changes. (Tebaldi et al. 2004, 2005).

Quantifying Uncertainty

- Variability of global temperature increase across 16 models.
 MAGICC/SCENGEN program (Wigley, 2001, 2003).
- Probabilistic description of regional climate changes. (Tebaldi et al. 2004, 2005).

• Gridded, global, spatial approach ...

Data

Data provided for the Fourth Assessment Report of IPCC:

- 21 models (CCSM, GFDL, HADCM, PCM, ...)
- Around $2.8^{\circ} \times 2.8^{\circ}$ resolution (8192 data points, T42)

- Different scenarios (A2: "business as usual", A1B, B1)
- Temperature, precipitation, pressure, winds...

Data

Data provided for the Fourth Assessment Report of IPCC:

- 21 models (CCSM, GFDL, HADCM, PCM, ...)
- Around $2.8^{\circ} \times 2.8^{\circ}$ resolution (8192 data points, T42) aggregate to $5^{\circ} \times 5^{\circ}$ and omit the "poles" (3264 points).
- Different scenarios (A2: "business as usual", A1B, B1)
- Temperature, precipitation, pressure, winds... seasonal averages over years 1980–1999 and 2080–2099

For models i = 1, ..., N, stack the gridded output into vectors:

- $\mathbf{X}_i = \text{simulated present climate}_i$
- $\mathbf{Y}_i = \text{simulated future climate}_i$

Objective:

Probabilistic description of modeled climate change $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i$

Data level:

 $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change}$

Data level:

 $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change}$

Data level:

 $\mathbf{D}_i = \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change}$

= large scale structure + small scale structure

= climate signal + model bias and internal variability

Data level:

$$\begin{split} \mathbf{D}_i &= \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change} \\ &= \text{large scale structure} + \text{small scale structure} \\ &= \text{climate signal} + \text{model bias and internal variability} \\ &= \mu_i + \varepsilon_i \end{split}$$

Data level:

$$\begin{split} \mathbf{D}_i &= \mathbf{Y}_i - \mathbf{X}_i = \text{simulated climate change} \\ &= \text{large scale structure} + \text{small scale structure} \\ &= \text{climate signal} + \text{model bias and internal variability} \\ &= \mu_i + \varepsilon_i \end{split}$$

 $egin{aligned} \mathbf{D}_i &\mid oldsymbol{\mu}_i, \ \phi_i \sum \ & \phi_i > 0 \quad i = 1, \dots, N \ & ext{for given } \Sigma \end{aligned}$

Process level:

 $\mu_i = \mathbf{M} \theta_i$ for given **M**

Process level:

 $\mu_i = \mathbf{M} \theta_i$ for given **M**

 $\boldsymbol{\theta}_i \mid \boldsymbol{\vartheta}, \ \psi_i \stackrel{\text{iid}}{\sim} \mathcal{N}_p(\boldsymbol{\vartheta}, \ \psi_i \mathbf{I}) \qquad \psi_i > 0 \qquad i = 1, \dots, N$

Prior level:

 $\phi_i \stackrel{\text{iid}}{\sim} \overline{\operatorname{I}} \Gamma(\xi_1, \xi_2) \qquad \xi_1, \xi_2 > 0 \qquad i = 1, \dots, N$ $\psi_i \stackrel{\text{iid}}{\sim} \overline{\operatorname{I}} \Gamma(\xi_3, \xi_4) \qquad \xi_3, \xi_4 > 0 \qquad i = 1, \dots, N$ $\vartheta \sim \mathcal{N}_p(\mathbf{0}, \xi_5 \mathbf{I}) \qquad \xi_5 > 0$

for given ξ_1, \ldots, ξ_5

Need to specify:

- \bullet Covariance model for Σ
- \bullet Basis functions used in ${\bf M}$
- Hyperparameters $\xi_1, \xi_2, \quad \xi_3, \xi_4, \quad \xi_5$

Covariance Model for Σ

The covariance matrices $\phi_i \Sigma$ are positive definite.

Examples of positive definite functions on the sphere:

1. representation with an infinite series of Legendre polynoms

$$c(h; \phi_i, \tau) = \phi_i (1 - 2\tau \cos(h) + \tau^2)^{-3/2}$$

2. restriction of a positive definite function on \mathbb{R}^3 to the sphere $c(h; \phi_i, \tau) = \phi_i \exp(-\tau \sin(h/2))$

Range τ is choosen according to an "empirical Bayes" approach.

Basis Functions Used in M

1. Spherical harmonics

Basis Functions Used in M

- 1. Spherical harmonics
- 2. Indicator functions

Hyperparameters ξ_1, \ldots, ξ_5

To make sure that variability around the truth is smaller than bias and internal variability

 $\phi_i > \psi_i$

Choose ξ_1, ξ_2, ξ_3 small, $\xi_4 \in [1, 2.5]$, ξ_5 large.

Hyperparameters ξ_1, \ldots, ξ_5

To make sure that variability around the truth is smaller than bias and internal variability

 $\phi_i > \overline{\psi_i}$

Choose ξ_1, ξ_2, ξ_3 small, $\xi_4 \in [1, 2.5]$, ξ_5 large. $\xi_4 \in [.5, 1.5]$ for 2020-2029 projections.

The goal is the posterior distribution of $\mathbf{M}\boldsymbol{\vartheta}$ given the data \mathbf{D}_i :

 $[\mathbf{M}\boldsymbol{\vartheta} \mid \mathbf{D}_1, \dots, \mathbf{D}_N, \dots]$

The goal is the posterior distribution of $\mathbf{M}\boldsymbol{\vartheta}$ given the data \mathbf{D}_i :

 $[\mathsf{M}\vartheta \mid \mathsf{D}_1,\ldots,\mathsf{D}_N,\ldots]$

Via Bayes' theorem, the posterior density is [process | data, parameters] \propto [data | process, parameters] \cdot [process | parameters] \cdot [parameters]

No closed form of the posterior density.

Use computational approaches MCMC.

No closed form of the posterior density.

Use computational approaches MCMC.

Gibbs sampler:

- 1. Express the distribution of the parameter conditional on everything else.
- 2. Cycle among the parameters by simulating a new value based on the full conditional distribution and the current values of the other parameters.

3. Repeat, ...

Full Conditionals

Full conditionals for the parameters are available:

 $artheta \mid \ldots \sim \mathcal{N}_p(\cdot, \cdot)$ $egin{aligned} & heta_i \mid \ldots \sim \mathcal{N}_p(\cdot, \cdot) \ & \phi_i \mid \ldots \sim \mathrm{I}\Gamma(\cdot, \cdot) \ & \psi_i \mid \ldots \sim \mathrm{I}\Gamma(\cdot, \cdot) \end{aligned}$

Full Conditionals

Full conditionals for the parameters are available:

$$\begin{split} \vartheta \mid \ldots \sim \mathcal{N}_{p}(\mathbf{A}^{-1}\mathbf{b}, \ \mathbf{A}^{-1}) \\ \mathbf{A} &= \frac{1}{\xi_{5}}\mathbf{I} + \sum_{i=1}^{N} \frac{1}{\psi_{i}}\mathbf{I} \qquad \mathbf{b} = \sum_{i=1}^{N} \frac{1}{\psi_{i}}\theta_{i} \\ i &= 1, \ldots, N : \ \theta_{i} \mid \ldots \sim \mathcal{N}_{p}(\mathbf{A}^{-1}\mathbf{b}, \ \mathbf{A}^{-1}) \\ \mathbf{A} &= \frac{1}{\psi_{i}}\mathbf{I} + \frac{1}{\phi_{i}}\mathbf{M}^{\mathsf{T}}\Sigma^{-1}\mathbf{M} \quad \mathbf{b} = \frac{1}{\psi_{i}}\vartheta + \frac{1}{\phi_{i}}\mathbf{M}^{\mathsf{T}}\Sigma^{-1}\mathbf{D}_{i} \\ i &= 1, \ldots, N : \ \phi_{i} \mid \ldots \sim \mathrm{I}\Gamma\left(\xi_{1} + \frac{n}{2}, \xi_{2} + \frac{1}{2}(\mathbf{D}_{i} - \mathbf{M}\theta_{i})^{\mathsf{T}}\Sigma^{-1}(\mathbf{D}_{i} - \mathbf{M}\theta_{i})\right) \\ i &= 1, \ldots, N : \ \psi_{i} \mid \ldots \sim \mathrm{I}\Gamma\left(\xi_{3} + \frac{p}{2}, \xi_{4} + \frac{1}{2}(\theta_{i} - \vartheta)^{\mathsf{T}}(\theta_{i} - \vartheta)\right) \end{split}$$

Gibbs Sampler

- Gibbs sampler programmed in R
- Run 20000 iterations
 (10000 burn-in, keep every 20th, takes few hours)
- Visual/primitive inspection of convergence

Temperature Change Quantiles

20% quantile of temperature change [°C] (2080-2100 vs 1980-2000)

Exceedance Probabilities

Probability of exceeding 2°C temperature change (2080-2100 vs 1980-2000)

DJF

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Exceedance Probabilities

10-11

33

Exceedance Fractions

Regional Assessment

35

Global Assessment

 \mathbf{a}

Source: AR4, IPCC

- Use "more" data
 - \rightsquigarrow ensemble runs, model present and future individually, . . .

- Use "more" data
 - \rightsquigarrow $\$ ensemble runs, model present and future individually, . . .
- Use AOGCM specific weighting
 → performance, "core" simililarities, ...

- Use "more" data
 - \rightsquigarrow $\$ ensemble runs, model present and future individually, . . .
- Use AOGCM specific weighting
 ~> performance, "core" simililarities, ...
- Parameterize covariance matrices
 ~> built in range, nonstationarity, ...

- Use "more" data
 - \rightsquigarrow -ensemble runs, model present and future individually, . . .
- Use AOGCM specific weighting
 → performance, "core" simililarities, . . .
- Parameterize covariance matrices
 ~> built in range, nonstationarity, ...
- Building bi-/multivariate models
 v use temperature for precipitation prediction, . . .

- Use "more" data
 - \rightsquigarrow $\$ ensemble runs, model present and future individually, . . .
- Use AOGCM specific weighting
 → performance, "core" simililarities, ...
- Parameterize covariance matrices
 ~> built in range, nonstationarity, ...
- Building bi-/multivariate models
 v→ use temperature for precipitation prediction, . . .

Is an geostatisitical approach adequat?

• NARCCAP: North American Regional Climate Change Assessment Program. www.narccap.ucar.edu

Is an geostatisitical approach adequat?

- NARCCAP: North American Regional Climate Change Assessment Program. www.narccap.ucar.edu
- PRUDENCE: Prediction of Regional scenarios and Uncertainties for Defining EuropeaN Climate change risks and Effects. http://prudence.dmi.dk

CAR and SAR Models

Spatial autoregressive models represent the data at a lattice site as a linear combination of neighboring locations.

1. Simultaneous autoregressive (SAR) models

2. Conditional autoregressive (CAR) models

CAR and SAR Models

Spatial autoregressive models represent the data at a lattice site as a linear combination of neighboring locations.

1. Simultaneous autoregressive (SAR) models

$$Y_i = \mu_i + \sum_j b_{ij} (Y_j - \mu_j) + \varepsilon_i$$

2. Conditional autoregressive (CAR) models $f(Y_i \mid Y_{-i})$ with Y_{-i} all but Y_i

Discussion

- AOGCMs are not "equal"
- AOGCMs are not "unbiased"
- AOGCMs are not "independent"

References

Furrer, Knutti, Sain, Nychka, Meehl, (2007). Spatial patterns of probabilistic temperature change projections from a multivariate Bayesian analysis, *Geophys. Res. Lett.*, 34, L06711, doi:10.1029/2006GL027754.

Furrer, Sain, Nychka, Meehl, (2007). Multivariate Bayesian Analysis of Atmosphere-Ocean General Circulation Models, to appear in *Environmental and Ecological Statistics*.

Furrer, Sain, (2007). Spatial Model Fitting for Large Datasets with Applications to Climate and Microarray Problems, submitted to *Statistics and Computing*.

Sain, Furrer, Cressie, (2007). Combining Regional Climate Model Output via a Multivariate Markov Random Field Model. 56th Session of the International Statistical Institute, Lisbon, Portugal.