
Spatial Patterns of

Probablistic Temperature

Change Projections

IMAGe ToYII, 05/07/07

Reinhard Furrer



2

We present probabilistic projections for
spatial patterns of future temperature change
using a hierarchical Bayesian model.

Collaboration with: Reto Knutti - ETHZ

Stephan Sain, Doug Nychka, Claudia Tebaldi,

Jerry Meehl, Linda Mearns, . . . - NCAR



Outline of the Talk
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• Climate projection data

• A simple hierarchical Bayesian model

• Presenting uncertainty results

• Model extensions

• Conclusion



Study Climate
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Source:
AR4,
IPCC



Study Climate with AOGCMs
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AOGCM: Atmosphere-Ocean General Circulation Models

Numerical models that calculate the detailed large-scale

motions of the atmosphere or the ocean explicitly from

hydrodynamical equations.
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AOGCM: Atmosphere-Ocean General Circulation Models



Example: Atmospheric Model
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Input


• External forcings (radiation, volcanos,. . . )

• Anthropogenic forcings (GHG, aerosols,. . . )

• Initial conditions

↓
• Flow dynamics, PDEs

• Discretization and simplifications

• Parametrization

↓
Output

{ • Temperature and precipitation

• Pressure, wind, . . .
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Source:
AR4,
IPCC
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Source: AR4, IPCC



Quantifying Uncertainty
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• Variability of global temperature increase across 16 models.

MAGICC/SCENGEN program (Wigley, 2001, 2003).
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• Variability of global temperature increase across 16 models.

MAGICC/SCENGEN program (Wigley, 2001, 2003).

• Probabilistic description of regional climate changes.

(Tebaldi et al. 2004, 2005).
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Quantifying Uncertainty
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• Variability of global temperature increase across 16 models.

MAGICC/SCENGEN program (Wigley, 2001, 2003).

• Probabilistic description of regional climate changes.

(Tebaldi et al. 2004, 2005).

• Gridded, global, spatial approach . . .



Data
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Data provided for the Fourth Assessment Report of IPCC:

• 21 models (CCSM, GFDL, HADCM, PCM, . . . )

• Around 2.8◦ × 2.8◦ resolution (8192 data points, T42)

• Different scenarios (A2: “business as usual”, A1B, B1)

• Temperature, precipitation, pressure, winds. . .



Data
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Data provided for the Fourth Assessment Report of IPCC:

• 21 models (CCSM, GFDL, HADCM, PCM, . . . )

• Around 2.8◦ × 2.8◦ resolution (8192 data points, T42)

aggregate to 5◦ × 5◦ and omit the “poles” (3264 points).

• Different scenarios (A2: “business as usual”, A1B, B1)

• Temperature, precipitation, pressure, winds. . .

seasonal averages over years 1980–1999 and 2080–2099



Statistical Model
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For models i = 1, . . . , N , stack the gridded output into vectors:

Xi = simulated present climatei

Yi = simulated future climatei

Objective:

Probabilistic description of modeled climate change

Di = Yi −Xi



Statistical Model
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Data level:

Di = Yi −Xi = simulated climate change
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Statistical Model
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Data level:

Di = Yi −Xi = simulated climate change

= large scale structure + small scale structure

= climate signal + model bias and internal variability

= µi + εi

Di | µi, φi
iid∼ Nn( µi, φiΣ ) φi > 0 i = 1, . . . , N

for given Σ



Statistical Model
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Process level:

µi = Mθi

for given M
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Process level:

µi = Mθi

for given M

θi | ϑ, ψi
iid∼ Np( ϑ, ψiI ) ψi > 0 i = 1, . . . , N



Statistical Model
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Prior level:

φi
iid∼ IΓ( ξ1, ξ2 ) ξ1, ξ2 > 0 i = 1, . . . , N

ψi
iid∼ IΓ( ξ3, ξ4 ) ξ3, ξ4 > 0 i = 1, . . . , N

ϑ ∼ Np( 0, ξ5I ) ξ5 > 0

for given ξ1, . . . , ξ5



Statistical Model
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Need to specify:

• Covariance model for Σ

• Basis functions used in M

• Hyperparameters ξ1, ξ2, ξ3, ξ4, ξ5



Covariance Model for Σ
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The covariance matrices φiΣ are positive definite.

Examples of positive definite functions on the sphere:

1. representation with an infinite series of Legendre polynoms

c(h;φi, τ) = φi
(
1− 2τ cos(h) + τ2

)−3/2

2. restriction of a positive definite function on R3 to the sphere

c(h;φi, τ) = φi exp
(
−τ sin(h/2)

)

Range τ is choosen according to an “empirical Bayes” approach.



Basis Functions Used in M
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1. Spherical harmonics



Basis Functions Used in M
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1. Spherical harmonics

2. Indicator functions



Hyperparameters ξ1, . . . , ξ5
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To make sure that variability around the truth

is smaller than bias and internal variability

φi > ψi

Choose ξ1, ξ2, ξ3 small, ξ4 ∈ [ 1, 2.5 ], ξ5 large.



Hyperparameters ξ1, . . . , ξ5

25

To make sure that variability around the truth

is smaller than bias and internal variability

φi > ψi

Choose ξ1, ξ2, ξ3 small, ξ4 ∈ [ 1, 2.5 ], ξ5 large.

ξ4 ∈ [ .5, 1.5 ] for 2020-2029 projections.



Posterior Distribution
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The goal is the posterior distribution of Mϑ given the data Di:

[Mϑ | D1, . . . ,DN , . . . ]



Posterior Distribution
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The goal is the posterior distribution of Mϑ given the data Di:

[Mϑ | D1, . . . ,DN , . . . ]

Via Bayes’ theorem, the posterior density is

[ process | data, parameters ]

∝ [ data | process, parameters ]

· [ process | parameters ] · [ parameters ]



Posterior Distribution
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No closed form of the posterior density.

Use computational approaches MCMC.



Posterior Distribution
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No closed form of the posterior density.

Use computational approaches MCMC.

Gibbs sampler:

1. Express the distribution of the parameter

conditional on everything else.

2. Cycle among the parameters by simulating a new value based

on the full conditional distribution and the current values of

the other parameters.

3. Repeat, . . .



Full Conditionals
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Full conditionals for the parameters are available:

ϑ | . . . ∼ Np(·, ·)

θi | . . . ∼ Np(·, ·)

φi | . . . ∼ IΓ(·, ·)

ψi | . . . ∼ IΓ(·, ·)



Full Conditionals
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Full conditionals for the parameters are available:

ϑ | . . . ∼ Np(A−1b, A−1)

A =
1

ξ5
I +

N∑
i=1

1

ψi
I b =

N∑
i=1

1

ψi
θi

i = 1, . . . , N : θi | . . . ∼ Np(A−1b, A−1)

A =
1

ψ i
I +

1

φi
MTΣ−1M b =

1

ψ i
ϑ +

1

φi
MTΣ−1Di

i = 1, . . . , N : φi | . . . ∼ IΓ
(
ξ1 +

n

2
, ξ2 +

1

2
(Di −Mθi)

TΣ−1(Di −Mθi)
)

i = 1, . . . , N : ψi | . . . ∼ IΓ
(
ξ3 +

p

2
, ξ4 +

1

2
(θi − ϑ)T(θi − ϑ)

)



Gibbs Sampler
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• Gibbs sampler programmed in R

• Run 20000 iterations

(10000 burn-in, keep every 20th, takes few hours)

• Visual/primitive inspection of convergence



Temperature Change Quantiles
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Exceedance Probabilities
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Exceedance Probabilities
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Exceedance Fractions

34

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exceeded  temperature  [[°°C]]

F
ra

ct
io

n 
of

 g
lo

be

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DJF, 66% prob.
JJA, 66% prob.

DJF, 90% prob.
JJA, 90% prob.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Exceeded  temperature  [[°°C]]
F

ra
ct

io
n 

of
 la

nd
0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DJF, 66% prob.
JJA, 66% prob.

DJF, 90% prob.
JJA, 90% prob.



Regional Assessment
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Global Assessment
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Source: AR4, IPCC
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• Use “more” data

 ensemble runs, model present and future individually, . . .
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• Use “more” data

 ensemble runs, model present and future individually, . . .

• Use AOGCM specific weighting

 performance, “core” simililarities, . . .

• Parameterize covariance matrices

 built in range, nonstationarity, . . .

• Building bi-/multivariate models

 use temperature for precipitation prediction, . . .

• Address computational complexity

 sparsity, Metropolis-Hastings steps, . . .



Model Extensions
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Is an geostatisitical approach adequat?

• NARCCAP: North American Regional Climate Change

Assessment Program. www.narccap.ucar.edu
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Is an geostatisitical approach adequat?

• NARCCAP: North American Regional Climate Change

Assessment Program. www.narccap.ucar.edu

• PRUDENCE: Prediction of Regional scenarios and Uncertain-

ties for Defining EuropeaN Climate change risks and Effects.

http://prudence.dmi.dk



CAR and SAR Models
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Spatial autoregressive models represent the data at a lattice site

as a linear combination of neighboring locations.

1. Simultaneous autoregressive (SAR) models

2. Conditional autoregressive (CAR) models



CAR and SAR Models
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Spatial autoregressive models represent the data at a lattice site

as a linear combination of neighboring locations.

1. Simultaneous autoregressive (SAR) models

Yi = µi +
∑
j

bij(Yj − µj) + εi

2. Conditional autoregressive (CAR) models

f(Yi | Y−i) with Y−i all but Yi



Discussion
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• AOGCMs are not “equal”

• AOGCMs are not “unbiased”

• AOGCMs are not “independent”
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