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We present probabilistic projections for
spatial patterns of future temperature change
using a hierarchical Bayesian model.

Collaboration with: Reto Knutti - ETHZ

Stephan Sain, Doug Nychka, Claudia Tebaldi,
Jerry Meehl, Linda Mearns, ... - NCAR




Outline of the Talk

e Climate projection data
e A simple hierarchical Bayesian model
e Presenting uncertainty results

e Model extensions

e Conclusion
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Study Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

Numerical models that calculate the detailed l|arge-scale
motions of the atmosphere or the ocean explicitly from
hydrodynamical equations.
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Study Climate with AOGCMs

AOGCM: Atmosphere-Ocean General Circulation Models

CCSM3 DJF temperature change 2080-2100 vs 1980-2000
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Example: Atmospheric Model

e External forcings (radiation, volcanos,...)
Input e Anthropogenic forcings (GHG, aerosols,...)
e Initial conditions

l

e Flow dynamics, PDEs
e Discretization and simplifications
e Parametrization

!

e [emperature and precipitation
e Pressure, wind, ...

Output {




Models Do Not Agree
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Models Do Not Agree

CCSM3 DJF temp change difference to sample mean (21 models)
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Models Do Not Agree
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Quantifying Uncertainty

Variability of global temperature increase across 16 models.
MAGICC/SCENGEN program (Wigley, 2001, 2003).
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Quantifying Uncertainty

e Variability of global temperature increase across 16 models.
MAGICC/SCENGEN program (Wigley, 2001, 2003).

e Probabilistic description of regional climate changes.
(Tebaldi et al. 2004, 2005).
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Quantifying Uncertainty

e Variability of global temperature increase across 16 models.
MAGICC/SCENGEN program (Wigley, 2001, 2003).

e Probabilistic description of regional climate changes.
(Tebaldi et al. 2004, 2005).

e Gridded, global, spatial approach ...




Data

Data provided for the Fourth Assessment Report of IPCC:

e 21 models (CCSM, GFDL, HADCM, PCM, ...)

e Around 2.8° x 2.8° resolution (8192 data points, T42)

e Different scenarios (A2: “business as usual”, A1B, B1)

e [emperature, precipitation, pressure, winds. ..




Data

Data provided for the Fourth Assessment Report of IPCC:

e 21 models (CCSM, GFDL, HADCM, PCM, ...)

e Around 2.8° x 2.8° resolution (8192 data points, T42)
aggregate to 5° x 5° and omit the “poles” (3264 points).

e Different scenarios (A2: “business as usual”, A1B, B1)

e [emperature, precipitation, pressure, winds. ..
seasonal averages over years 1980—1999 and 2080—2099




Statistical Model

For models : = 1,..., N, stack the gridded output into vectors:

X,; = simulated present climate;
Y, = simulated future climate;

Objective:

Probabilistic description of modeled climate change
Di — Yi — Xi




Statistical Model

Data level:

D, =Y, — X, =simulated climate change
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Statistical Model

Data level:

D;

Y, — X; = simulated climate change

large scale structure 4+ small scale structure

climate signal 4+ model bias and internal variability

I + €

. |
D; | wi, &5 ~ Na(pi, &%) ¢; >0 i=1,...,N

for given X




Statistical Model

Process level:

p; = M0,
for given M




Statistical Model

Process level:

p; = M0,
for given M
0; | 9, i W Np( 9, o) Yp; > 0 i=1,...,N




Statistical Model

Prior level:

b N IM(&q, &) £, &>0 i

P N IM( €3, &4) €3, & >0 i

ﬁNNp(O,£51) £5>O

for given &4,...,¢&5

1,...

1,...



Statistical Model

Need to specify:
e Covariance model for X

e Basis functions used in M

® Hyperparameters €17€27 €37€47 55




Covariance Model for x=

The covariance matrices ¢;3 are positive definite.

Examples of positive definite functions on the sphere:

1. representation with an infinite series of Legendre polynoms

c(h; ¢;, ) = ?bi(l — 27 cos(h) + 7_2)—3/2

2. restriction of a positive definite function on R3 to the sphere

c(h; ¢i,7) = ¢y exp(~7sin(h/2))

-

. Rérnge 7 IS choosen according to an “empirical Bayes” approach.
- 5 -

=




Basis Functions Used in M

1. Spherical harmonics




Basis Functions Used in M

1. Spherical harmonics

2. Indicator functions




Hyperparameters &1, ...,¢&s

To make sure that variability around the truth
IS smaller than bias and internal variability

®; > U,

Choose £1,&5,83 small, &4 €[ 1, 2.5], &5 large.




Hyperparameters &1, ...,¢&s

To make sure that variability around the truth
IS smaller than bias and internal variability

®; > U,

Choose £1,&5,83 small, &4 €[ 1, 2.5], &5 large.

€4 €[.5, 1.5] for 2020-2029 projections.




Posterior Distribution

The goal is the posterior distribution of M1 given the data D;:

[M® | Dq,...,Dy, ...]




Posterior Distribution

The goal is the posterior distribution of M1 given the data D;:
[MY | Dyq,...,Dp, ... ]

Via Bayes’ theorem, the posterior density is

[ process | data, parameters |
« [ data | process, parameters |
- [ process | parameters ] - [ parameters |




Posterior Distribution

No closed form of the posterior density.

Use computational approaches MCMC.




Posterior Distribution

No closed form of the posterior density.
Use computational approaches MCMC.

Gibbs sampler:

1. Express the distribution of the parameter
conditional on everything else.

2. Cycle among the parameters by simulating a new value based
on the full conditional distribution and the current values of

the other parameters.

3. Repeat, ...

i 1 _':i:I-F
] by, ~




Full Conditionals

Full conditionals for the parameters are available:

9| ...~ N )
0; ] ... Np(-,o)
bi | .. ~IF(0)
bil . ~IEC )




Full Conditionals

Full conditionals for the parameters are available:
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Gibbs Sampler

e Gibbs sampler programmed in R

e Run 20000 iterations
(10000 burn-in, keep every 20th, takes few hours)

e Visual/primitive inspection of convergence




Temperature Change Quantiles

20% quantile of temperature change [°C]
e (2080-2100 vs 1980-2000)

0O 1 2 3 4 5 6 7 8 9




Exceedance Probabilities

Probability of exceeding 2°C temperature change

DJF

(2080-2100 vs 1980-2000)




1ES

Exceedance Probab

UM TR AR _____i -
MR ___1 -
MU AT _________l; -
0 — -

O O - - -
]}

S f
o)
_ _ _

_ _ _
8'0 °0 00
|axid Aq Ajiqeqoud
9JuUepPoadXa 10119]1S0d

4.5 5.5

3.5

2.5
Exceeded temperature [°C]

15

0.5

Y

_ _ _ _ _ _
8'0 0 00
|axid Aq Anjiqeqoud
9JUBpPoadXa 10119)1S0d

Exceeded temperature [°C]




Exceedance Fractions
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Regional Assessment




Global Assessment

¢+ B12020-2029

Knutti 2003
— Wigley 2001
Stott 2006
Harris 2006
A2 2090-2099 Furrer 2007

AR4 AOGCMs




Model Extensions

e Use “more” data
~~ ensemble runs, model present and future individually, . ..
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Model Extensions

e Use “more” data
~~ ensemble runs, model present and future individually, . ..

e Use AOGCM specific weighting
~~ performance, ‘“core” simililarities, . ..

e Parameterize covariance matrices
~~ built in range, nonstationarity, ...

e Building bi-/multivariate models
~~ use temperature for precipitation prediction, ...

-‘F*‘Address computational complexity
1.~ sparsity, Metropolis-Hastings ste

W .




Model Extensions

Is an geostatisitical approach adequat?

e NARCCAP: North American Regional Climate Change
Assessment Program. www.narccap.ucar.edu




Model Extensions

Is an geostatisitical approach adequat?

e NARCCAP: North American Regional Climate Change
Assessment Program. www.narccap.ucar.edu

e PRUDENCE: Prediction of Regional scenarios and Uncertain-
ties for Defining EuropeaN Climate change risks and Effects.

http://prudence.dmi.dk




CAR and SAR Models

Spatial autoregressive models represent the data at a lattice site
as a linear combination of neighboring locations.

1. Simultaneous autoregressive (SAR) models

2. Conditional autoregressive (CAR) models




CAR and SAR Models

Spatial autoregressive models represent the data at a lattice site
as a linear combination of neighboring locations.

1. Simultaneous autoregressive (SAR) models
Y, = i+ > b (Y — pg) + e
J

2. Conditional autoregressive (CAR) models
f(Y; | Y—i) with Y_; all but Y;




Discussion

e AOGCMs are not “equal”

e AOGCMs are not “unbiased”

e AOGCMs are not “independent”
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