Statistics for detecting climate change

Serge Guillas
School of Mathematics
Georgia Institute of Technology

Supported by the Statistical and Applied Mathematical Sciences Institute
1. Introduction
2. Fingerprints, patterns of climate change
3. Detection and attribution
4. Bayesian approach
5. Future work
Introduction

2006-2007 SAMSI climate and RM working group:

- reading group (EOF, detection & attribution,..)
- Undergraduate workshop
- Data portal: CMIP3 multi-model dataset at PCMDI (ex IPCC AR4 archive)
Search for evidence of climate change
Fingerprints, patterns of climate change

- Patterns are spatio-temporal responses of the climate to a certain forcing
- e.g. [only spatial] surface temperature change from increasing GHG or from anthropogenic sulfate aerosols
- Chosen a priori (physics or ensemble of runs of a model)
Detection and attribution

Detection of anthropogenetic signals

Decompose the observations y into a linear combination of climate change “signals” g_i.

g_i: patterns (or building blocks for fingerprints) of responses to individual or combined forcings (solar, sulfate aerosol, GHG,..).
\[y = \sum_{i=1}^{m} b_i g_i + \varepsilon \]

(1)

Note: Linearity good assumption (Gillett et al., 2004)

Option: “orthogonalize” some signals prior to the regression (e.g. sulfate aerosol, greenhouse gas).
/home/guillas/climate/dataCM2/dataEOFdiffsJan/eof_ts--a1_ts_179W179E--89S89N_Jan_mon.Rdata (Jan)
Similar results with more general approach:

Regression

- \(Y \): observations \(p \)-dimensional
- \(X \): patterns of climate change from model, known \(p \times m \) matrix of rank \(q \).
- each column of \(X \) is a vector representing a response-pattern spatially

Linear regression: (Mardia et al. 1979)

\[
Y = X\beta + u \tag{2}
\]

with \(u \) is the climate noise, \(Eu = 0, C(u) = \sigma^2 I \).
Ordinary Least Squares:

Let $\hat{\beta} = (X'X)^{-1} X'Y$.

Th. [Gauss-Markov Th]: $\hat{\beta}$ is the BLUE of β.

Generalized Least Squares:

When $C(u) \neq \sigma^2 I$, Consider the transformed model:

$$Z = C(u)^{-1/2} X \beta + v$$ \hspace{1cm} (3)

where $Z = C(u)^{-1/2} Y$, $v = C(u)^{-1/2} u$.
"Pre-whitening" with any matrix P such that:

$$
E(Puu'P') = PC(u)P' = I. \tag{4}
$$

$C(v) = I$, so we can apply G-M to this model:

Let

$$
\tilde{\beta} = \left(X'C(u)^{-1}X \right)^{-1} X'C(u)^{-1/2}z = \left(X'C(u)^{-1}X \right)^{-1} X'C(u)^{-1}y. \tag{5}
$$

$\tilde{\beta}$ is the BLUE of β, and $C(\tilde{\beta}) = (X'C(u)^{-1}X)^{-1}$.
Possible to look at scalar diagnostics $\phi = w'Y$. (e.g. global mean, or focus on one mean for one grid cell)

Issue: noise in X inflates the variance of $\tilde{\beta}$ by approximately $1 + 1/M$ ($M = \text{ens. size}$)

Fingerprints

The columns of $C(u)^{-1}X$ are the optimal fingerprints.
Climate noise

Note: $\mathcal{C}(u)$ is unknown, so:

- $\hat{\mathcal{C}}_n(u) = \frac{1}{n} Y_n Y'_n$ can be plugged in.
- Y_n are “pseudo-observations” from a control run with features as close as possible to the observations (locations of missing data, ..)
Problem: $\hat{C}_{n}(u)$ not invertible, $(p > n)$, so:

1. use k EOFs of control runs (or sometimes of forced runs)

2. Define $P_{(k)}$ as matrix of k highest variance EOFs weighted by $\sqrt{\lambda_i}$

3. use the Moore-Penrose pseudo-inverse $P'_{(k)}P_{(k)}$ in place of \hat{C}_{n}^{-1}

So $P'_{(k)}P_{(k)} = I_k$

Issue: depends on k!
Tests and confidence regions

Under normality assumption for \(u \),

\[
(\tilde{\beta} - \beta) \left(X' C(u)^{-1} X \right)^{-1} (\tilde{\beta} - \beta) \sim \chi^2_m \quad (6)
\]

Using EOFs:

With an estimated Covariance matrix (often on another sample),

test becomes a \(T^2 \)-test, using \(F \)-distributions.

\[
(\tilde{\beta} - \beta) \left(X' C(u)^{-1} X \right)^{-1} (\tilde{\beta} - \beta) \sim T^2 \quad (7)
\]
Bayesian approach

Berliner et al. (2000)

True vector of temperatures T_t

Observations Y_t

$$Y_t | T_t, D_t \sim N (L_t T_t, D_t)$$ \hspace{1cm} (8)

with L_t location matrix (only 0 except 1 for the location)

$$T_t | a, g, \Sigma \sim N (a . g, \Sigma^s)$$ \hspace{1cm} (9)

with g spatial fingerprint, Σ^s spatial covariance.
Assumption of space-time separability.

Prior on a: (actually collection of)

$$
\pi(a) = pn(0, \sigma^2) + (1 - p)n(\mu_A, \tau^2_A) \quad (10)
$$
Future work

Common EOFs
Benestad (2001) [downscaling studies]

- concatenate the fields (temp, pressure)
- Carry out the EOF decomposition alltogether.
- EOFs more representative of the patterns.

..not yet used for detection & attribution
Spatio-temporal EOFs
(North and Wu, 2001)

Issues:

• size of covariance matrices
• type of correlation
• truncation