Multi-resolution Based Nonstationary Covariance Modeling: Monte-Carlo EM approach

- Sparse Wavelet Estimator
- EM for irregular data
- Ozone example

Supported by the National Science Foundation Random Matrix Workshop, May 2007

Surface Ozone

standard deviation

standard deviation

- *O*₃ is one of six common pollutants
- EPA's national air quality standards (80 ppb)

• 1997 Data Set

- 364 locations on 48×48 grid
- 184 days fromMay to Oct

Motivation and Goal

• Motivation:

Flexible Nonstationary Covariance Model

Gaussian Model in Spatial Statistics

- Kriging (geostatistics)

[e.g., Higdon et al., 1999; Fuentes, 2001; Fuentes and Smith, 2001; Nychka et al., 2003; Sampson and Guttorp, 1992; Anderes and Stein, 2005]

- Variational and OI methods (data assimilation) [e.g., Purser et al., 2005; Gaspari et al., 2006]

• Goal and Challenges: Computational efficiency

– Irregularly distributed observational data
– Large data set

Multi-resolution representaion

Gaussian stochastic process f(x)

$$f(x) = \sum_{\nu=1}^{N} \alpha_{\nu} w_{\nu}(x)$$

 α_{ν} are Gaussian, basis $\{w_{\nu}\}$ is known and fixed.

By vectors and matrices

 $f = \overline{\mathcal{W} lpha}$

Giving values of f on a fine grid.

A 1-d Wavelet basis

$$f(x) = \sum_{k=1}^{2^{J}} a_{J,k} \phi\left(2^{J} x - k\right) + \sum_{j=J}^{\infty} \sum_{k=1}^{2^{j}} b_{j,k} \psi\left(2^{j} x - k\right)$$

A 1-d local, but nonorthogonal basis

$$\Sigma = \mathcal{W} H^2 \mathcal{W}^T$$

$$H = \begin{bmatrix} H_{00} & H_{01} \\ H_{10} & H_{11} \end{bmatrix} \approx \begin{bmatrix} \tilde{H}_{00} & 0 \\ 0 & \tilde{H}_1 \end{bmatrix}$$

where \tilde{H}_{00} is thresholded and $\tilde{H}_1 = \text{diag}(H_{11})$

Enforced sparsity in H

Gaussian Model

$$\mathbf{f} = (rac{\mathbf{f}_1}{\mathbf{f}_2}) \sim \mathcal{N}(0, \Sigma_{ heta})$$

where $\Sigma_{\theta} = \mathcal{W}\tilde{H}^2(\theta)\mathcal{W}^T$.

Monte-Carlo EM

$$Q(\theta, \theta^*) = E[\mathcal{L}(\mathbf{f}, \theta) | \mathbf{f}_1, \theta^*]$$

$$\approx \frac{1}{N} \sum_{n=1}^N \mathcal{L}\left(\left(\begin{array}{c} \mathbf{f}_1\\ \mathbf{f}_2^{(n)} \end{array}\right), \theta\right)$$

MC sampling:

$$\mathbf{f}_2^{(n)} \sim [\mathbf{f}_2 | \mathbf{f}_1, \mathcal{W} \tilde{H}^2(heta^*) \mathcal{W}^T]$$

Smoothed MC EM

 $Q(\theta, \theta^*) + p(\theta)$

where p is a roughness penalty — or log prior.

Different thresholding in \tilde{H}

Lev 2, 86.08% (5045)

Lev 3, 98% (8363)

Cross-validation

- Flexible nonstationary covariance model $\mathcal{W}\tilde{H}^2\mathcal{W}^T$
- Theory to support sparsity in \tilde{H}
- Practical estimator (Monte-Carlo EM) to handle the incomplete data
- Examples using surface ozone data
- Application to the Polar Ionosphere
 - Aurora image data (\sim 100K)
 - Prior covariance for ionospheric data assimilation