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Temperature estimates (“reconstructions”)

Source:  IPCC 2007



Incomplete data problems

• Estimation of temperature values from proxies is 
incomplete data problem: 

Given proxies     and relations between proxies and 
temperatures      estimable from period of overlap, 
what are estimated temperatures      in the past?

• Usually linear models (one per record) are used

with B estimated from period of overlap:
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Some straightforward points

• (Co-)variances: sample variance of imputed values   
underestimates variance of      (need to add variance of 
imputation error   )

• Regression coefficient B depends on covariance matrix 
of      , which depends on missing values (nonlinear 
problem)

• Model based on assumption of missigness at random 
(may be violated in climate change context)  
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Expectation-maximization (EM) algorithm

1. Take estimated mean values        and covariance 
matrix    as given and compute                 
and                .             from them

2. Re-estimate       and    from completed dataset and 
from estimate of imputation error covariance 

3. Iterate (1) and (2) until convergence.

EM algorithm converges monotonically but slowly 
(Dempster et al. 1977)
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Regularized EM algorithm

1. Take estimated mean values        and covariance 
matrix    as given and compute regularized estimate     
and                            from them

2. Re-estimate       and    from completed dataset and 
from estimate of imputation error covariance 

3. Iterate (1) and (2) until convergence.

Regularized EM algorithm is only assured to converge 
(slowly) in special cases (e.g., Tikhonov     with fixed 
regularization parameter/prior variance).
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Regularization I: Truncated total least squares

• Based on eigendecomposition of     with eigenvector 
matrix    :  

• Orthogonal regression of variables with missing values 
on variables with available values truncated at rank r.

• Takes errors in variables into account (symmetric in 
available and missing values): solves

• Fast: only one eigendecomposition per iteration 
necessary 
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Fierro et al. 1997

min‖[xa−µa,xm−µm]− [x̂a− µ̂a, x̂m− µ̂m]‖2

s.t. x̂a = xa + η̂, x̂m− µ̂m = (x̂a− µ̂a)B



Regularization II: Tikhonov regularization/ridge regression

• Regularization of     by addition of diagonal matrix

• In standard form,                                                   , 
where                  (Wiener filtering of Fourier 
components F).

• Also takes errors in variables into account (arises as 
regularization of TTLS if relative error homogeneous; 
Golub et al. 2000)

• Slower: requires one eigendecomposition per record 
with missing values and per iteration 

Σ̂
B̂r = (Σaa +h2D)−1Σam, D = diag(Σaa)

B̂r = V diag( f j)Λ+F, f j = λ2
j/(λ2

j +h2)
Σaa = V Λ2V T

Schneider 2001



Regularization III: Choice of regularization parameter

• If principal interest is prediction (imputation of missing 
values), generalized cross-validation suggests itself

• Straightforward computationally with Tikhonov 
regularization (only scalar optimization necessary)

• But note: GCV function has mass point at zero 
(Wahba and Wang 1995), so regularization parameter 
must be bounded away from zero

• GCV also possible with TTLS, but more complicated 
computationally (van Huffel et al. 2006)

Schneider 2001



An example algorithm

• Use Tikhonov regularization/ridge regression with a 
separate regularization parameter estimated for each 
missing value

• Regularization parameter estimated by GCV (bounded 
away from zero using a discrepancy principle)

• Empirically, algorithm converges reliably

• Temporal covariance information can also be exploited

Systematic tests with realistic test data using different regularization 
approaches would be desirable

Schneider 2001



Convergence of regularized EM algorithm with ensemble 
of GCM simulated temperatures
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Year

Source: NASA GISS

Loss of spatial information



Local linear temperature trends

Source:  IPCC 2007

Loss of temporal information



• Anthropogenic climate change occurs on timescales of 
decades or longer

• To identify anthropogenic climate changes, isolate slow 
manifold of climate variations

• Use spatial correlations to devise more efficient low-pass 
filter than is obtainable from local information alone

Isolate slow climate variations with spatial and temporal information

Space-time filtering



• Define slow and fast covariance matrices      and  

• Seek linear combinations               that maximize 
generalized Rayleigh quotient 

• Seek next linear combination              that maximizes              
subject to being uncorrelated with first, etc.

Decomposition of variations into uncorrelated subspaces with 
decreasing ratio of slow to fast variance

Slow subspace of climate variations
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• Maximizes ratio of among-group to within group 
variance

• Groups are years of data (with fractional membership):

• Leads to generalized eigenvalue problem

Discriminant analysis

R = uT Σ>u/(uT Σ<u)
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•       (or total covariance matrix   ) is rank deficient

• Regularization by truncated PCA of     with effective 
rank chosen by GCV of regression                  

• Results in weight vectors    and time series      

• Spatial patterns    associated with time series    obtained 
by regression of     on    (dual of     in full rank case)

• Truncation of discriminant analysis to variates with           
(bootstrap) yields slow subspace of dimension   :      

Discriminant analysis (cont.)
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• HadCRUT2 surface temperature data for 22.5S to 
67.5N for years 1915 to 2005

• Eliminate grid points with more than 70% missing values

• Impute missing values and estimate covariances with 
regularized EM algorithm for remaining points

• Perform discriminant analysis to isolate interdecadal 
variations

Yields three-dimensional slow subspace

Interdecadal temperature variations



Schneider & Held,  2001; http://www.gps.caltech.edu/~tapio/discriminants/animations.html

http://www.gps.caltech.edu/~tapio/discriminants/animations.html
http://www.gps.caltech.edu/~tapio/discriminants/animations.html


• For climate change detection, evaluate similarity of slow 
manifolds of simulations and observations

• For model evaluation, evaluate differences between slow 
manifolds of simulations and observations

• Focus on slow manifolds may eliminate need for large 
ensembles because typically only the slow manifold is of 
interest in climate studies

Applications



• Regularized EM algorithm provides framework for 
estimation of missing values and covariance matrices in 
incomplete, rank-deficient data

• Different regularization approaches can be used within 
regularized EM algorithm (and should be tested):

• Tikhonov/ridge regression

• Truncated TTLS

• Tapered covariance functions etc.

• Convergence of algorithm assured with fixed regularization 
parameter, but adaptive regularization parameter desirable 
(choose by GCV, GML, etc.)

Conclusions



• Space-time filtering much more effective than local filtering 
to isolate slow variations

• Approach derived from discriminant analysis can be used to 
identify slow subspace of climate variations

• May be improved by allowing more flexible variance 
structures and by relaxing restriction to linear subspaces

• Effective space-time filtering may make large ensembles of 
climate simulations unnecessary

Conclusions (cont.)


