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Outline
Uncoupled Clouds

Focus on Cloud Base Height

Stochastic Model for Uncoupled Cloud Height

Time Series Model

Mixture Model

Future Directions
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Uncoupled Clouds
Data:

Cloud Base Height and Liquid Water Path
3 1/2 years at 20 second time steps from single
column
Only under fair weather conditions - Lots of missings!
>1 million observations
About 7% have uncoupled cloud, rest do not

Goal:

Stochastic model for Cloud Height and LWP
Examine effects of using random generations of
these processes as inputs to model for boundary
layer conditions
Short term (1 or 2 days)
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Uncoupled Clouds
Cloud Height: Diurnal and Seasonal Trends

       Cloud Base Height by Hour 

Cloud Base Height by Month
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Uncoupled Clouds
A Day in the Life of Cloud Height
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Model for Uncoupled Clouds
Purely stochastic model

Not affected by boundary layer processes

Conditional on presence of uncoupled cloud

Yt = µt + εt

Yt represents Cloud Height (or log Water Path) at time t
µt is mean trend (depends on month and time of day)
εt is error at time t

Data in 20 second time steps

Errors clearly not independent across time!
Same cloud over multiple time points
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Model for Cloud Height
Recall: Yt = µt + εt

Model trend with seasonal and daily components

µt = α+β1 sin
(

2πM
12

)

+β2 cos
(

2πM
12

)

+β3 sin
(

2πH
12

)

+β4 cos
(

2πH
12

)

M is time in months and H is time in hours

Simple trigonometric model gives good fit to overall
trend
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Time Series Model for Errors
Recall: Yt = µt + εt

Autoregressive Moving Average (ARMA) Model

εt = ρ1εt−1 + ... + ρkεt−k + φ1wt−1 + ... + φhwt−h + wt

{wt} is a White Noise sequence with variance σ2

ARMA (k, h)
k is order of the autoregressive part
h is order of the moving average part

AR propogates current value to future
MA propogates random shock to future
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Model for Cloud Height Errors
Recall: Yt = µt + εt

Error terms given by ARMA (1,2)
Estimated coefficients differ by month
Interest in short term effects, may differ by season

εt = ρεt−1 + φ1wt−1 + φ2wt−2 + wt

AR term ρ ≈ 1 → simplification: differences follow
MA (2)
εt − εt−1 = φ1wt−1 + φ2wt−2 + wt

MA components = 0 → Simple Random Walk
Negative here, so less drift than SRW
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Model for Presence of Cloud
Overall 6.9% of time points have uncoupled cloud

Logistic Regression Model
Let Zt = 1 if cloud, 0 otherwise
Let Z̃t represent the history up to time t

Pr[Zt = 1|Z̃t] = exp(α+β{Zt−1+Zt−2+Zt−3})
1+exp(α+β{Zt−1+Zt−2+Zt−3})

Current cloud status depends on proportion of cloud
cover in last minute

Can add other covariates such as time of day, humidity,
etc.
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Algorithm to Simulate Clouds
Generate presence/absence of cloud from logistic
model

Once new cloud is present, initial height is generated
from N(µt, σ

2
t )

µt given by seasonal and diurnal trend

σ2
t is variance that is estimated monthly

Generate heights from appropriate ARMA process until
cloud disappears

Restart after new cloud appears

Good fit to data, MOSTLY!
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BUT ...
Residuals from ARMA process fit

Overall
Residuals from ARMA(1,2)

Time
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Drawback
Cloud height measurement based on lowest detected
cloud

How to allow for jumps from upper to lower cloud
layers?

Is the simple model sufficient?
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Mixture Model
Let N = Total # of clouds above boundary layer in [0, T ]

Knot zj = time that center of cloud j is overhead

Bandwidth bj = 1/2 length of time cloud j is overhead

Height hj = average base height of cloud j
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Placing the Clouds in the Window
Number of clouds N ∼ Poisson(λT )

Knots zj drawn from distribution on [0, T ]

Bandwidths bj drawn from distribution on [0, T/2]

Heights hj drawn from Normal

Simple case:
Knots and Bandwidths are uniform

In general:
Distributions can depend on covariates such as time,
etc.

But what data do we actually have?
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Cloud Base Height Model
Observed cloud base height at time t

Yt
D
=

∑

j∈Mt
pj(t)δ (hj) + εt

Mt = {j|zj − bj ≤ t ≤ zj + bj} is subset of clouds
overhead at time t

pj(t) is probability of picking cloud j

δ (hj) is point mass at height hj

εt
iid
∼ N(0,σ2

e ) is variation in height

How to determine probabilities?

Howard Bondell – p. 16



Which Cloud is Observed?
For each cloud in the window

Cloud Density, dj = conditional prob. of detection
given no lower detections

Densities dj
iid
∼ Beta (a, b)

For time t, order possible clouds from lowest to highest
Shoot beam upward and see what is detected
Pr[ pick cloud j], pj(t) = dj

∏

k∈M(t)
hk<hj

(1 − dk)

Parameters in assumed distributions can be estimated
from observed data

Then can generate cloud process from this model
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Further Work: Coupled Clouds
Uncoupled clouds can affect, but are not affected by
Boundary Layer conditions

Coupled clouds feedback into the boundary layer

CCOOUUPPLLEEDD BBOOUUNNDDAARRYY

CCLLOOUUDDSS LLAAYYEERR

Stochastic parameterizations for coupled clouds need
to allow for this interplay

Need to combine stochastic model for uncoupled clouds
with more physically based models for coupled clouds
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