Model Error and Parameter Estimation in a Simplified Mesoscale Prediction Framework, Part I:

Model Description and Sources of Uncertainty

Guillaume Vernieres, Josh Hacker, Montse Fuentes

Topics

- Mesoscale forecasting some background.
- Data assimilation at mesoscales.
- Types of error in mesoscale models.
- A column model to emulate a full 3D mesoscale model, and experience with it.
- Some naive parameter estimation experiments.

Mesoscales

Horizontal wind spectra in the frequency domain.

Mesoscale Prediction Times

 Mesoscale prediction is fundamentally an initial condition problem.

Forecast Error at the Surface

Errors near the surface are often dominated by bias, and show a diurnal evolution.

Lack of Variability the Surface

Ensembles are extremely underdispersive and show little intrinsic error growth near the surface in the short range, leading to experimentation with "multi-model" ensembles (FULL). From Hou et al. 2001 *MWR*.

Information in Surface Observations

- Surface observations are relatively dense and inexpensive to gather.
- Typically under-utilized in operational data assimilation. Model error? Constraints in the assimilation systems?
- Potential to to tell us something about the state of the overlying PBL.
- Potential to to tell us something about the model, including values of parameters.

Column Model Environment

- A 1-D PBL modeling framework: various land-surface and PBL parameterizations, forced. Original model development by Mariusz Pagowski, NOAA/ESRL.
- Internal dynamics for ageostrophic wind, diffusion equation, etc.
- Geostrophic and radiative forcing from a mesoscale model (e.g. RUC or WRF) or observations.

Cheap! Thousands of realizations possible with a quick turn-around

Model Formulation

$$\frac{\partial U}{\partial t} = f_c \left(V - V_g \right) - \frac{\partial}{\partial z} \overline{u' w'}$$
$$\frac{\partial V}{\partial t} = -f_c \left(U - U_g \right) - \frac{\partial}{\partial z} \overline{v' w'}$$
$$\frac{\partial \theta}{\partial t} = -\frac{\partial}{\partial z} \overline{w' \theta'}$$
$$\frac{\partial Q}{\partial t} = -\frac{\partial}{\partial z} \overline{w' q'}$$

Prognostic in U, V, θ , and Q with parameterization providing closure. Parameterization is the same as in the Weather Research and Forecast (WRF) model.

Model Formulation

$$\frac{\partial U}{\partial t} = f_c (V - V_g) - \mathcal{U} (U, V, \theta, Q, \mathbf{P})$$
$$\frac{\partial V}{\partial t} = -f_c (U - U_g) - \mathcal{V} (U, V, \theta, Q, \mathbf{P})$$
$$\frac{\partial \theta}{\partial t} = -\mathcal{T} (U, V, \theta, Q, \mathbf{P})$$
$$\frac{\partial Q}{\partial t} = -\mathcal{Q} (U, V, \theta, Q, \mathbf{P})$$

Closure terms are functions of the resolved state (forcing and diffusion), and myriad parameters ${\bf P}.$

Model Formulation with Advection

$$\frac{\partial U}{\partial t} = f_c (V - V_g) + \mathbf{V} \bullet \nabla U - \frac{\partial}{\partial z} \overline{u' w'}$$
$$\frac{\partial V}{\partial t} = -f_c (U - U_g) + \mathbf{V} \bullet \nabla V - \frac{\partial}{\partial z} \overline{v' w'}$$
$$\frac{\partial \theta}{\partial t} = \mathbf{V} \bullet \nabla \theta - \frac{\partial}{\partial z} \overline{w' \theta'}$$
$$\frac{\partial Q}{\partial t} = \mathbf{V} \bullet \nabla Q - \frac{\partial}{\partial z} \overline{w' q'}$$

Advection acts to relax the column state toward an imposed 3D state.

Skill in PBL State Estimates: T

Skill in PBL State Estimates: U

Using only screen-height (surface) observations, skillful profiles are estimated at all times of day: (a) 1PM LT, (b) 7PM LT, (c) 1AM LT, and (d) 7AM LT.

Using only screen-height (surface) observations, skillful profiles are estimated at all times of day: (a) 1PM LT, (b) 7PM LT, (c) 1AM LT, and (d) 7AM LT.

State Augmentation

Data assimilation to estimate a discrete system state \mathbf{Z} at time t.

 ${f Z}$ is a joint state, with both state variables and parameters.

 ${\bf X}$ represents state variables.

 \mathbf{x} is a set of parameters, which may or may not be physical.

Then $\mathbf{Z} = (\mathbf{X}, \mathbf{x}).$

Given all observations up to the current time, \mathbf{Y}_t , we want to estimate $\mathbf{p}(\mathbf{Z}_t|\mathbf{Y}_t)$.

These experiments are to estimate parameters in a land-surface scheme, given screen-height observations and an evolving model.

An exchange coefficient for moisture, Q_c , is computed:

$$Q_c = \frac{M\rho_1 \overline{w'q'}}{q_0 - q_1}$$

- *M* is a moisture availability parameter {0,1}.
- ρ_1 is density at the first atmospheric model level.
- q_0 and q_1 are moisture contents at the surface and the first atmospheric level, repsectively.
- $\overline{w'q'}$ is the parameterized kinematic moisture flux.

Provides a lower boundary condition (forcing) for the atmospheric model.

Estimate a Single Parameter

the true value is known.

Correlations Without Assimilation

- Correlation coefficients of T_2 with parameters M and THC, for 100 ensemble members integrated for 10 days.
- Parameter distributions are fixed.
- Distributions chosen as β with $\sigma = 0.1M$ and 0.01THC.

Correlations With Assimilation

- Correlation coefficients of T_2 with parameters M and THC, for 100 ensemble members integrated for 10 days.
- Parameter distributions are estimated while assimilating.
- Correlations change, transitions more
 pronounced.

Dependent Parameters

- M and THC are linearly dependent when estimated. Here is at 00 UTC for over 10 days, but this is true at any time.
- Cannot be distinguished, thus could be replaced by a single parameter.

Distribution Improves Assimilation

Compared to single fixed parameter values, distributed parameters result in a better fit to observations. The effect is particularly true during transitions.

Estimation Improves Assimilation

Compared to fixed distributed parameter values, estimated parameters result in a better fit to observations.

IMAGE TOY Workshop, May 2007

Error in the Profile

0.8 Differences in error (estimated –
fixed distribution)
0.4 show the profile is
0.2 generally improved,
especially during the
growth phase of the
-0.2 PBL.

IMAGE TOY Workshop, May 2007

Summary and Open Questions: Parameter Estimation

State augmentation is a useful parameter estimation approach in observation system simulation experiments (OSSEs), but is much more difficult in real-data applications.

Much more work to do:

- How will a free bias parameter behave?
- Can we find distributions that make a better forecast in the face of other, unknown, model errors?
- Can we find appropriate stochastic processes to propagate the parameter distributions in time?