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Topics
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Mesoscale forecasting - some background.

Data assimilation at mesoscales.

Types of error in mesoscale models.

A column model to emulate a full 3D mesoscale model, and
experience with it.

Some naive parameter estimation experiments.



Mesoscales
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Horizontal wind spectra in the frequency domain.

Vinnichenko 1970 Vander Hoven 1957



Mesoscale Prediction Times
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Mesoscale prediction is fundamentally an initial condition prob-
lem.

00 48362412
Prediction time (hours)

Forecast

Nowcast

Nowcasting is typically done by extrapolating current 
conditions because dynamical models have less skill at 
these time scales.  A place for better data assimilation 
and accounting for model error?



Forecast Error at the Surface
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Fig. 2 compares the errors of the surface 

temperature and wind forecasts of the MM5 and WRF 
models, and the error evolution with forecast time. 
Apparently, the two models possess very similar skills 
in the forecasts of the surface variables. MM5 performs 
a little bit better on both surface wind and temperature 
forecast, partially due to its more accurate Noah land 
surface model and partially due to its modified MRF 
PBL scheme that significantly improves the daytime 
surface flux computation and mixing-layer depth 
estimation (Liu et. al, 2004). The forecast error 
generally grows with increasing forecast time. The 
RMSE errors of the temperature grow by ~0.4 C in 24 
hour in both models. Evident oscillations can be 
observed in the error growth of temperature and wind 
speed in response to the diurnal changes of surface 
heating/cooling and PBL mixing. It can be observed 
that significant wind speed errors exist in the initial 
conditions of both models, as a result of interpolation 
from the ETA analyses. These errors appear to spin 
down quickly in the first few hours of the forecasts, in 
both models. Finall y, the two models perform pretty 
evenly in the surface moisture forecasts (not shown).  
 

 

 
GMT hours 

Fig. 3. Domain average of BIAS errors of surface 
temperature (a) and wind speed (b) of 0-12 (solid 
lines) and 12 -24 h (dotted lines) forecasts from 
WRF (thin-blue) and MM5 (thick-red) models, for 
the 28 forecast days in the April and May, 2004.  

 
Averaging the errors of the twice-daily forecasts 

that are conducted each day at 12 hour intervals (00 
and 12 UTC), according to the forecast time, masks 
some important diurnal components of the model 
forecast errors. Because the model surface forecasts are 
strongly affected by the diurnal evolution of surface 
heating and PBL development, it is necessary to know 
how well the WRF and MM5 models handle these 
processes. Fig. 3 plots the diurnal evolution of the 
BIAS errors of the temperature and wind speed 
forecasts at the surface. The 24 hour forecasts from 
each model are broken into two parts: (0 - 12h) 
nowcasts and short-range (12 – 24h) forecasts. The two 
models differ from each other greatly in the daytime 
period, with a warm bias in MM5 and a cold bias of a 
similar magnitude in WRF. The WRF model appears to 
significantly underestimate the intensity of the day-
time surface wind, with a maximum bias of ~1.5 m/s 
occurred at noon time. In contrast, the biases are much 
smaller in MM5, thanks again to the improved MRF 
PBL scheme in the MM5 model. It is interesting to see 
that the short-range (12 – 24 h) forecasts have 
somewhat smaller bias than the shorter (0-12h) 
nowcasts for both temperature and wind speed. This 
may be related to the model dynamic and diabatic 
“spin-up” f rom the “cold-start” initialization. 
Nevertheless, short-range forecasts generally show 
larger RMSE errors than the nowcasts (not shown). 
Finall y, during the night-time, the surface forecast 
errors of the two models are rather similar and both 
present a little bit of warm bias and an overestimate of 
wind speeds.  

Upper-air verifi cation statistics for the same 
period are calculated, and the RMSE errors of 
temperature, humidity and wind from the MM5 and 
WRF forecasts are compared in Fig. 4. First, some 
discrepancies can be seen between the initial 
conditions (0-h forecasts) of the two models, although 
both are interpolated from the same ETA analyses. 
These differences exist in most layers, and the 
magnitudes are comparable to the differences between 
the 12-h forecasts of the two models. Unli ke those in 
the surface forecasts, the forecast errors in the upper-
air grow with time in the two models are very similar, 
in terms of both the error sizes and the height 
distribution. Both models have the largest error growth 
of moisture and temperature in the lower troposphere 
and a relatively uniform wind error growth at different 
heights. However, the two models do differ in many 
details. The MM5 forecasts in the lower troposphere 
are more accurate than WRF, especially for the 
temperature and moisture fields, whereas WRF shows 
better performance in the upper-levels. The WRF 
model predicts better the winds in the layer between 
700 and 200 hPa, with a RMSE error of the vector 

T_BIAS (C)  

SPD_BIAS (m/s)  

WRF 
MM5 
WRF 
MM5 

a 

b 

Errors near the surface
are often dominated by
bias, and show a diurnal
evolution.



Lack of Variability the Surface
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FIG. 3. Same as in Fig. 2 but for temperature at 850 hPa
(TEMP850), the 2-m surface air and dewpoint temperature (TEMP2M
and DEWP2M), and 3-h accumulated precipitation (ACCPPT). As
with other products, the accumulated 3-h precipitation for each model
was interpolated to the common grid. Dewpoint data for NCP2 were
not available.

imbalance affecting the MSLP and, through hydrostatic
balance, the geopotential heights at upper levels. This
imbalance must be generating fast external inertia–grav-
ity waves, since most of the geostrophic adjustment

takes place within 6 h and the spread subsides. Since
the imbalance does not appear in individual ensembles
spread, it must be related to an initial imbalance shared
by all the members of at least one ensemble system. In
order to determine the system originating the imbalance,
we computed the spread of three of the four systems,
and found that the spread computed without the NSSL
forecasts (not shown) does not have a peak at 3 h, in-
dicating that the initial imbalance is associated with the
NSSL ensemble.

Figure 2 also shows that the ensemble spread of the
mass variables grows at different rates at different
levels. NSSL and CAPS have some initial decay, sug-
gesting that the initial perturbations are not as well
balanced as in the NCP1 and NCP2 systems. At lower
levels (MSLP and HGT850) NSSL has the largest
spread and some growth (defined as absolute, not rel-
ative growth, i.e., the slope of the spread), but at the
upper levels (HGT500 and HGT250), after the first 6
h, NSSL shows less growth than the other models.
NCP1, NCP2, and CAPS have similar slopes in the
spread at the upper levels, indicating dynamical
growth of the initial perturbations. The lower slope
of the NSSL ensemble at the upper levels may be due
to the fact that the boundary conditions in the outer
domain are the same for all of its members and be-
cause of the use of initial random perturbations. The
lower levels may be more influenced by the spread in
the precipitation due to the perturbations in the phys-
ics.

The most notable characteristic in Fig. 2, however, is
that the full ensemble spread is much larger than those
of the individual ensembles throughout the integration.
Furthermore, it tends to show a larger slope (absolute
growth) after the initial oscillations during the first 12
h. This suggests that the use of different analyses and
different models leads to an ensemble with larger spread
growth than attained by individual systems, which may
help to make the ensemble more effective. A quanti-
tative comparison of the forecast spread with the fore-
cast error (presented in the next section, cf. Fig. 6) sup-
ports this conjecture. The spread of the ensemble of four
control runs (cntl) is a close second, also supporting the
conjecture.

The spread of several variables associated with tem-
perature and moisture, that is, temperatures at 850 hPa
(TMP850), 2-m temperature (TEMP2M), dewpoint
(DEWP2M), and 3-h accumulated precipitation
(ACCPPT), is shown in Fig. 3. The spread of these
variables evolves quite differently from the height fields
spread of Fig. 2. The NSSL ensemble, which includes
different combinations of physical parameterizations for
the boundary layer and for the cumulus convection, has
much larger spread than the other models. In the surface
temperature and dewpoint spread (but not in the pre-
cipitation), the NSSL ensemble has a very strong diurnal
signal, with the maximum spread in the dewpoint at
2100 UTC (about 1500 local time), and in the temper-

Ensembles are extremely underdispersive and show little in-
trinsic error growth near the surface in the short range,
leading to experimentation with \multi-model" ensembles
(FULL). From Hou et al. 2001 MWR.



Information in Surface Observations
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Surface observations are relatively dense and inexpensive to
gather.

Typically under-utilized in operational data assimilation.
Model error?
Constraints in the assimilation systems?

Potential to to tell us something about the state of the over-
lying PBL.

Potential to to tell us something about the model, including
values of parameters.



Column Model Environment
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A 1-D PBL modeling framework: various land-surface and
PBL parameterizations, forced. Original model development
by Mariusz Pagowski, NOAA/ESRL.

Internal dynamics for ageostrophic wind, di�usion equation,
etc.

Geostrophic and radiative forcing from a mesoscale model
(e.g. RUC or WRF) or observations.

Cheap! Thousands of realizations possible with a quick turn-around



Model Formulation
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@U
@t = fc (V � Vg)�

@
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@zw
0q0

Prognostic in U , V , �, and Q with parameterization providing clo-
sure. Parameterization is the same as in the Weather Research
and Forecast (WRF) model.



Model Formulation
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@U
@t = fc (V � Vg)� U (U; V; �;Q;P)

@V
@t = �fc (U � Ug)� V (U; V; �;Q;P)

@�
@t = �T (U; V; �;Q;P)

@Q
@t = �Q (U; V; �;Q;P)

Closure terms are functions of the resolved state (forcing and
di�usion), and myriad parameters P.



Model Formulation with Advection
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@U
@t = fc (V � Vg) +V � rU � @

@zu
0w0
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@zv
0w0
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@t = V � rQ� @
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Advection acts to relax the column state toward an imposed 3D
state.



Skill in PBL State Estimates: T
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Figure2: MAE profilesof
�

for theassimilationexperiments(solid)andclimatologicalsimulations
(dashed),presentedin orderof increasingtimefrom initialization(0700LT). Verificationtimesare
(a)1300LT, (b) 1900LT, (c) 0100LT, and(d) 0700LT.

32

Using only screen-height
(surface) observations,
skillful pro�les are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (c) 1AM LT,
and (d) 7AM LT.



Skill in PBL State Estimates: U
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Figure 4: Same as Fig. 2 but for the
�

-wind component.

34

Using only screen-height
(surface) observations,
skillful pro�les are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (c) 1AM LT,
and (d) 7AM LT.



Skill in PBL State Estimates: Qv
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Figure 3: Same as Fig. 2 but for
�

.

33

Using only screen-height
(surface) observations,
skillful pro�les are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (c) 1AM LT,
and (d) 7AM LT.



State Augmentation
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Data assimilation to estimate a discrete system state Z at time t.

Z is a joint state, with both state variables and parameters.

X represents state variables.

x is a set of parameters, which may or may not be physical.

Then Z = (X;x).

Given all observations up to the current time, Yt, we want to
estimate p(ZtjYt).

These experiments are to estimate parameters in a land-surface
scheme, given screen-height observations and an evolving model.



A Parameter to Modify Soil Moisture
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An exchange coe�cient for moisture, Qc, is computed:

Qc =
M�1w0q0
q0 � q1

M is a moisture availability parameter f0,1g.

�1 is density at the �rst atmospheric model level.

q0 and q1 are moisture contents at the surface and the �rst
atmospheric level, repsectively.

w0q0 is the parameterized kinematic moisture 
ux.

Provides a lower boundary condition (forcing) for the atmo-
spheric model.



Estimate a Single Parameter
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Spread and error Individual estimates Correlations

Forecast Hour Forecast Hour Forecast Hour
Single parameters (moisture availability) can be estimated when
the true value is known.



Correlations Without Assimilation
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Correlations With Assimilation
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Dependent Parameters
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Distribution Improves Assimilation
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Estimation Improves Assimilation

IMAGE TOY Workshop, May 2007

05/04 05/05 05/06 05/07
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Analysis Time (UTC)

M
A

E
 T

2 (
K

)

Estimated, avg = 0.17513
Not Estimated, avg = 0.26874 Compared to �xed

distributed parameter
values, estimated pa-
rameters result in a
better �t to observa-
tions.



Error in the Pro�le
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Di�erences in er-
ror (estimated {
�xed distribution)
show the pro�le is
generally improved,
especially during the
growth phase of the
PBL.



Summary and Open Questions: Parameter Estimation
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State augmentation is a useful parameter estimation ap-
proach in observation system simulation experiments (OSSEs),
but is much more di�cult in real-data applications.

Much more work to do:

How will a free bias parameter behave?

Can we �nd distributions that make a better forecast in the
face of other, unknown, model errors?

Can we �nd appropriate stochastic processes to propagate
the parameter distributions in time?


