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®* Mesoscale forecasting - some background.

e Data assimilation at mesoscales.

® Types of error in mesoscale models.

® A column model to emulate a full 3D mesoscale model, and
experience with it.

® Some naive parameter estimation experiments.
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® Mesoscale prediction is fundamentally an initial condition prob-

lem.
Prediction time (hours)
00 12 24 36 48
Forecast
Nowcast

Nowcasting is typically done by extrapolating current
conditions because dynamical models have less skill at
these time scales. A place for better data assimilation

and accounting for model error?
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Errors near the surface
are often dominated by
bias, and show a diurnal
evolution.
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Ensembles are extremely underdispersive and show little in-
trinsic error growth near the surface in the short range,
leading to experimentation with “multi-model” ensembles
(FULL). From Hou et al. 2001 MWR.
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® Surface observations are relatively dense and inexpensive to
gather.

e Typically under-utilized in operational data assimilation.
Model error?

Constraints in the assimilation systems?

® Potential to to tell us something about the state of the over-
lying PBL.

® Potential to to tell us something about the model, including
values of parameters.
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e A 1-D PBL modeling framework: various land-surface and
PBL parameterizations, forced. Original model development
by Mariusz Pagowski, NOAA/ESRL.

® Internal dynamics for ageostrophic wind, diffusion equation,
etc.

® Geostrophic and radiative forcing from a mesoscale model
(e.g. RUC or WRF) or observations.

Cheap! Thousands of realizations possible with a quick turn-around
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Prognostic in U, V, 8, and Q with parameterization providing clo-
sure. Parameterization is the same as in the Weather Research
and Forecast (WRF) model.
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Closure terms are functions of the resolved state (forcing and
diffusion), and myriad parameters P.
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Advection acts to relax the column state toward an imposed 3D
state.
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Using only screen-height
(surface) observations,
skillful profiles are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (¢) 1AM LT,
and (d) 7TAM LT,
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Using only screen-height
(surface) observations,
skillful profiles are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (¢) 1AM LT,
and (d) 7TAM LT,
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Using only screen-height
(surface) observations,
skillful profiles are es-
timated at all times of
day: (a) 1PM LT, (b)
7PM LT, (¢) 1AM LT,
and (d) 7TAM LT,




Data assimilation to estimate a discrete system state Z at time ¢.

Z is a joint state, with both state variables and parameters.
X represents state variables.

X IS a set of parameters, which may or may not be physical.

Then Z = (X, x).

Given all observations up to the current time, Y;, we want to
estimate p(Z¢|Yy).

These experiments are to estimate parameters in a land-surface
scheme, given screen-height observations and an evolving model.
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An exchange coefficient for moisture, ¢, is computed:

_ Mpyuw'q
q0 — q1

Qe

® M is a moisture availability parameter {0,1}.
® pq is density at the first atmospheric model level.

® go and g7 are moisture contents at the surface and the first
atmospheric level, repsectively.

* w/q’ is the parameterized kinematic moisture flux.

Provides a lower boundary condition (forcing) for the atmo-
spheric model.
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Single parameters (moisture availability) can be estimated when
the true value is known.
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Correlation coefficients
of 1> with parameters
M and THC, for 100
ensemble members in-
tegrated for 10 days.
Parameter distributions
are fixed.

Distributions chosen as
B8 with ¢ = 0.1M and
0.01THC.
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Correlation coefficients
of 1> with parameters
M and THC, for 100
ensemble members in-
tegrated for 10 days.

Parameter distributions
are estimated while as-

similating.

Correlations change,
transitions more
pronounced.
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o VM and THC are linearly

dependent when esti-
mated. Here is at 00
UTC for over 10 days,
but this is true at any
time.

Cannot be distin-
qguished, thus could be
replaced by a single
parameter.
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Compared to single
fixed parameter val-
ues, distributed pa-
rameters result in a
better fit to observa-
tions. The effect is
particularly true dur-
ing transitions.
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Compared to fixed
distributed parameter
values, estimated pa-
rameters result in a
better fit to observa-
tions.
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Differences in er-
ror (estimated —
fixed distribution)
show the profile is
generally improved,
especially during the
growth phase of the
PBL.



e State augmentation is a useful parameter estimation ap-
proach in observation system simulation experiments (OSSEs),
but is much more difficult in real-data applications.

Much more work to do:

® How will a free bias parameter behave?

® Can we find distributions that make a better forecast in the
face of other, unknown, model errors?

® Can we find appropriate stochastic processes to propagate
the parameter distributions in time?
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