

### **Successful Calibration: A Practitioners Guide**

Jason Loeppky, William Welch  $^{\dagger}$  and Brian Williams  $^{\ddagger}$ 

University of British Columbia Okanagan <sup>†</sup> University of British Columbia <sup>‡</sup> Los Alamos National Laboratory May 21, 2007

### Outline



#### Introduction

- Statistical Framework
- Model Calibration
- Simulation Study
- Results
- Summary

#### Introduction



#### Computer Models:

- Simulate physical phenomena
- Complex mathematical models
- Deterministic output
- Computationally expensive

#### Using the computer code:

- Accurate estimate of the calibration parameter
- Predictions of the physical system



- Computer model, computationally inefficient
- Computer Model Data  $y_c = \eta(x, t)$ 
  - x is controllable inputs in the physical system
  - *t* uncontrollable calibration parameters
  - $\bullet$  m runs performed on the code
- Physical Data  $y_f(x) = \zeta(x) + \epsilon(x)$ 
  - subject to random error
  - *x* controllable inputs
  - *n* runs of the physical system



- Kennedy and O'Hagan (2001) model for calibration
- Statistical Model for Physical Data:

$$y_f(x) = \eta(x,\theta) + \delta(x) + \epsilon$$

- $\eta(x,\theta)$  computer code
- $\theta$  true value of the calibration parameter
- $\delta(x)$  discrepancy function
- $\epsilon$  is normal random random error
- Model  $\eta(x, \theta)$  and  $\delta(x)$  as independent Gaussian processes



- Model the common portion  $\eta(x,\theta)$  as a realization of a random function
- Let  $\eta(x,\theta) = \mu + Z_{\eta}(x,\theta)$ 
  - $\mu$ : overall mean
  - $Z_\eta(x^*,t^*)$ : Gaussian stochastic process indexed by  $(x^*,t^*)$

#### **Gaussian Stochastic Process**



- Mean zero
- Gaussian Covariance function  $\sigma_{\eta}^2 R_{\eta}$
- Where

$$R_{\eta}((x^*, t^*), (x', t')) = \exp\left\{-\sum_{j=1}^d \beta_j |x_j^* - x_j'|^2 - \sum_{j=d+1}^q \beta_j |t_j^* - t_j'|^2\right\}$$

with  $\beta_j \ge 0$ 

UBC

• Model  $\delta(x)$  as the realization of a random function

- $\checkmark$   $\delta$  is a Gaussian process (GP) independent of  $\eta$
- Mean zero
- Covariance function  $\sigma_{\delta}^2 R_{\delta}$



- Vector of Observations  $\mathbf{y} = (\mathbf{y}_F^T, \mathbf{y}_C^T)^T$
- Inputs  $(\boldsymbol{x}_1, \boldsymbol{\theta}), \dots, (\boldsymbol{x}_n, \boldsymbol{\theta})$  and  $(\boldsymbol{x}_1^*, \mathbf{t}_1^*), \dots, (\boldsymbol{x}_m^*, \mathbf{t}_m^*)$
- Likelihood

$$L(\mathbf{y}) \propto |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y}-\mu\mathbf{1})^T \Sigma^{-1}(\mathbf{y}-\mu\mathbf{1})\right\}$$

where

$$\Sigma = \Sigma_{\eta} + \left(\begin{array}{cc} \Sigma_{\delta} + \Sigma_{\varepsilon} & 0\\ 0 & 0 \end{array}\right)$$

Full MCMC to estimate the parameters

### **Statistical Framework**





•  $y_f(x) = \zeta(x) + \epsilon(x)$ 

- $\leftrightarrow x$ : known system inputs
- $\leftrightarrow y_f(x)$ : experimental data
- $\leftarrow \zeta(x) : \text{unobserved system response}$
- $\leftarrow \epsilon(x) : \text{ experimental error model}$

• 
$$\zeta(x) = \eta(x, \theta) + \delta(x)$$

- $\rightarrow \theta$ : unknown calibration inputs
- $\rightarrow \eta(x, \theta)$ : computer model
- $\rightarrow \delta(x)$ : model discrepancy



- $\leftarrow \mathsf{predicted} \ \delta(x)$
- $\rightarrow$  predicted  $\zeta(x)$
- $\leftrightarrow$  95/5 uncertainty bounds





#### Problem



- Estimation of the calibration parameter
  - Estimate of  $\theta$  may not match the true value
  - Hard to assess if the estimate is correct
  - In some situations accurate estimate is desired
- Goals of the Simulation Study:
  - . Develop a test suit of problems to assess the estimation of  $\boldsymbol{\theta}$
  - Test suit should cover situations that arise in practice
  - Develop tests that can be used to assess if the true value was estimated.

#### **Test Suite of Problems**

- Physical Data:  $y_f(x) = \zeta(x) + \epsilon$ 
  - Scalar response  $y_f(x)$
  - One input variable x
  - Added component of random variation
- Computer Data  $y_c = \eta(x, \theta)$ 
  - Scalar response  $y_c$
  - One controllable input  $\boldsymbol{x}$
  - One calibration parameter  $\boldsymbol{\theta}$





#### $\, {}_{ \! \bullet \! } \,$ Functions for $\eta, \, \delta \, {\rm and} \, \epsilon$

- $\eta(x,\theta)$ : unconditional realization of a GP
- $\delta(x)$ : unconditional realization of a GP independent of  $\eta(x,\theta)$
- ${\scriptstyle \bullet} \ \epsilon$  is independent Gaussian errors
- Using data that comes from a GP we do not have uncertainty due to using the incorrect model
- Allows a more accurate picture of what factors may affect calibration



- Factors that may affect calibration
  - . Complexity of  $\eta(x,\theta)$  and  $\delta(x)$
  - **.** Sensitivity of main effects and interaction in  $\eta(x,\theta)$
  - . Variation of the responses for  $\eta,\,\delta$  and  $\epsilon$
  - . Ratio of the variability between  $\eta$  and  $\delta$
  - Similarity of  $\eta(x,\theta)$  and  $\delta(x)$
- All of these will be controlled in a systematic manner for the simulation study



#### • Generation of $\eta(x,\theta)$

- Generate a mean zero, unit variance GP on a  $26\times26$  grid
- wee little bit on the diagonal for numerical stability
- . Control the roughness of parameters as  $\beta=0.5$  or 2 in the correlation function

$$\exp\left\{\sum_{i=1}^{d} -\beta_{i}(x_{i} - x_{i}')^{2} + \sum_{j=1}^{q} -\beta_{j+d}(t_{j} - t_{j}')^{2}\right\}$$

• Let  $y_c$  be the vector of  $26 \cdot 26 = 676$  responses generated on the grid.

#### **Data Generation, Cont.**



• • Controlling Sensitivity and Variance of  $y_c$ 

- ANOVA decomposition of  $y_c$
- Compute main effects and interactions
- Control  $Var(\mathbf{y}_c) = 20$
- Scale x,  $\theta$  and  $x\theta$  to control sensitivity
- Percentage contribution to the total variance of

 $(x, \theta, x\theta)$ 

is (0.6, 0.4, 0) and (0.5, 0.25, 0.25)

 $\hfill \hfill \hfill$ 

#### **Data Generation, Cont.**



- • New  $y_c$  is sum of the effects of  $x, \theta$  and  $x\theta$ 
  - $\ensuremath{\scriptstyle \, \rm s}$  Allows us to control the properties of  $y_c$
  - Code Runs:
    - Obtain a 26-run Maxi-min Latin hypercube
    - Collect y values according to the design
    - Use these values for the computer model data
    - Use remaining observations for assessing prediction accuracy

### Design





#### **Data Generation**



#### • Discrepancy Data: $\delta(x)$

- Generate a mean zero unit variance GP on a grid of 26 x values
- Control the complexity by adjusting the roughness parameter  $\beta$
- Control the similarity measure (discussed below)
- Physical Data:  $\zeta(x) + \epsilon(x)$

• 
$$\zeta(x) = \eta(x, \theta = 0.48) + \delta(x)$$

- $\epsilon \sim N(0,\sigma_{\epsilon}^2)$ ,  $\sigma_{\epsilon}^2=0.1~{\rm Or}~1$
- $x = \{0, 0.2, 0.4, 0.6, 0.8, 1.0\}$  used for the physical sites
- Each point is replicated resulting in 12 runs



- For a fixed value of  $\theta$  in the computer model  $\eta$  is a function of x
- The collection of all functions for any value of θ is the family of computer model curves
- If the discrepancy function is similar to one of these curves calibration may be more challenging
- The angle between the discrepancy and the family of computer model curves measures the similarity



- Let  $\delta$  be the  $26\times 1$  vector of discrepancy observations
- Let C be the  $26 \times 26$  matrix of computer model curves
- Empirically C is not of full rank
- That is the computer model curves do not span the full 26-D space
- Let *O* be the orthogonal basis vectors for *C*
- Let  $P = OO^T$  be the projection matrix

### Similarity Measure



- $P\delta$  is the projection of  $\delta$  into C
- $(I P)\delta$  is the orthogonal complement
- Angle between  $\delta$  and C is given by

$$\cos\phi = \frac{\|P\delta\|}{\|\delta\|}$$

•  $\phi$  is a measure of the similarity between the  $\delta$  and the computer model curves

#### **Controlling the Similarity**



Let

$$\tilde{\delta} = wP\delta + (1-w)(I-P)\delta$$

changing w will change the angle between  $\delta$  and the family of computer model curves

- For a new angle  $\varphi$ ,  $\cos \varphi$  is a quadratic function of w
- Solving the quadratic functions yields

$$w = \frac{\|(I-P)\delta\|\cos\varphi}{\|P\delta\|\sin\varphi + \|(I-P)\delta\|\cos\varphi}$$

### **Discrepancy, Revisited**

UBC

- $\checkmark$  Generate  $\delta$  and select a value of  $\varphi$
- Set  $\varphi$  at 0, 30, 60 and 90 degrees
- Compute w and find  $\tilde{\delta}$
- Scale  $\tilde{\delta}$  to have the same length as  $\delta$
- Scale  $\tilde{\delta}$  to have a variance  $\sigma_{\delta}^2 = 5$



- Setup a designed experiment to control the factors above.
  - Factor 1: complexity of the computer model (simple/complex)
  - Factor 2: interaction between x and  $\theta$  (no/yes)
  - Factor 3: regression component for  $\theta$  (no/yes)
    - This controls the distance between computer model curves
  - **Factor 4**: Similarity between  $\eta$  and  $\delta$  (Angle 0,30,60,90)
- Investigate all possible combinations of the four factors (32 runs)
- Generate 100 realizations for each factor combination

### **Example 1**

## UBC

#### Computer Model:

- $\beta_{\eta} = (0.5, 0.5)$
- Sensitivity to  $(x, \theta, x\theta) = (0.6, 0.4, 0)$
- $Var(y_c) = 20$
- No regression component

#### Discrepancy:

- $\beta_{\delta}=0.5$
- Angles varied between 0-90 degrees
- $Var(\delta) = 5$

#### Physical Data:

• 
$$\sigma_{\varepsilon}^2 = 0.1$$

### **Angle: 0 degrees**





### Angle: 30 degrees





### **Angle: 60 degrees**





NCAR Talk - p. 29/48

### **Angle: 90 degrees**







- Based on the above plots calibration has been unsuccessful
  - This is only one realization what about others?
  - Plot the Kernel density estimate of the posterior for various realizations
- Even if calibration is unsuccessful what about prediction
  - Predict the field mean using the Bayesian posterior (adjusted for bias)
  - Predict the field mean using  $\theta=0.48$  and adjust for the bias using the posterior distribution
  - compute the root mean squared error since we know the true field mean.

### **Angle: 0 degrees**



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



### Angle: 90 degrees



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



### Angle: 90 degrees



#### Prediction comparison for 100 realizations 3.5 Ο 3 Ο Ο 2.5 00 Ο 0000 Prediction at 0=0.48 8 2 $\bigcirc$ 00 $\mathcal{O}^{\mathcal{O}}$ 0 0 1.5 000 8 0 Ο 6 8 1 80 00 Ο Ο © <sub>00</sub> Ο Ο Ο 0.5 $\odot$ $\bigcirc$ 00 0 0.2 1.2 0 0.4 0.6 0.8 1.4 1.6 1.8 1 **Bayesian Prediction**

### Example 2



#### Computer Model:

- $\beta_{\eta} = (0.5, 0.5)$
- Sensitivity to  $(x, \theta, x\theta) = (0.5, 0.25, 0.25)$
- $Var(y_c) = 20$
- Regression component

#### Discrepancy:

- $\beta_{\delta}=0.5$
- Angles varied between 0-90 degrees
- $Var(\delta) = 5$

#### Physical Data:

• 
$$\sigma_{arepsilon}^2=0.1$$

### Example 2



- Same setup as Example 1
- Except there is an interaction between x and  $\theta$
- Added a separation between the computer model curves
- Examine one realization
- Look at various realizations for each angle (0, 30,60 90)

### Angle: 60 degrees





### **Angle: 0 degrees**



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



### Angle: 30 degrees





### Angle: 60 degrees



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



### **Angle: 90 degrees**



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



### Example 3



- Complex computer model
- Interaction between x and  $\theta$
- Added a separation between the computer model curves
- Examine one realization
- Look at various realizations for each angle (0, 30,60 90)

### **Angle: 60 degrees**





### **Angle: 0 degrees**



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



NCAR Talk - p. 44/48

### Angle: 30 degrees



#### • Kernel Density estimates of posterior of $\theta$ for 20 realizations



### Angle: 60 degrees



# • Kernel Density estimates of posterior of θ for 20 realizations



### **Angle: 90 degrees**







- Orthogonality helps calibration
- However: orthogonality is rarely the case
- Promising results for angles of 60 degrees
- Orthogonality makes it hard to control the complexity of the discrepancy
- Interaction between x and  $\theta$  helps calibration
- Complexity of code seems to have a limited effect on the ability to calibrate
- Whatever the situation Calibration is VERY difficult