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Introduction

Computer Models:
Simulate physical phenomena
Complex mathematical models
Deterministic output
Computationally expensive

Using the computer code:
Accurate estimate of the calibration parameter
Predictions of the physical system
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Available Data

Computer model, computationally inefficient

Computer Model Data yc = η(x, t)

x is controllable inputs in the physical system
t uncontrollable calibration parameters
m runs performed on the code

Physical Data yf (x) = ζ(x) + ǫ(x)

subject to random error
x controllable inputs
n runs of the physical system
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Statistical Model

Kennedy and O’Hagan (2001) model for calibration

Statistical Model for Physical Data:

yf (x) = η(x, θ) + δ(x) + ǫ

η(x, θ) computer code

θ true value of the calibration parameter

δ(x) discrepancy function

ǫ is normal random random error

Model η(x, θ) and δ(x) as independent Gaussian
processes
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Statistical Model

Model the common portion η(x, θ) as a realization of a
random function

Let η(x, θ) = µ + Zη(x, θ)

µ: overall mean
Zη(x

∗, t∗): Gaussian stochastic process indexed by
(x∗, t∗)
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Gaussian Stochastic Process

Assume Zη(x
∗, t∗) is normally distributed

Mean zero
Gaussian Covariance function σ2

ηRη

Where

Rη((x
∗, t∗), (x′, t′))

= exp
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Model Discrepancy

Model δ(x) as the realization of a random function
δ is a Gaussian process (GP) independent of η

Mean zero
Covariance function σ2

δRδ
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Statistical Model

Vector of Observations y = (yT
F ,yT

C)T

Inputs (x1,θ), . . . , (xn,θ) and (x∗

1, t
∗

1), . . . , (x
∗

m, t∗m)

Likelihood

L(y) ∝ |Σ|−1/2 exp

{

−
1

2
(y − µ1)T Σ−1(y − µ1)

}

where

Σ = Ση +

(

Σδ + Σε 0

0 0

)

Full MCMC to estimate the parameters
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Statistical Framework

x

η(x,θt)

ζ(x)

• yf (x) = ζ(x) + ǫ(x)

↔ x: known system inputs

↔ yf (x): experimental data

← ζ(x): unobserved system response

← ǫ(x): experimental error model

• ζ(x) = η(x, θ) + δ(x)

→ θ: unknown calibration inputs

→ η(x, θ): computer model

→ δ(x): model discrepancy

x

θ

x

0

δ(x)
δ̂(x)

← predicted δ(x)

→ predicted ζ(x)

↔ 95/5 uncertainty bounds

x

ζ(x)
ζ̂(x)
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Problem

Estimation of the calibration parameter
Estimate of θ may not match the true value
Hard to assess if the estimate is correct
In some situations accurate estimate is desired

Goals of the Simulation Study:
Develop a test suit of problems to assess the
estimation of θ

Test suit should cover situations that arise in practice
Develop tests that can be used to assess if the true
value was estimated.
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Test Suite of Problems

Physical Data: yf (x) = ζ(x) + ǫ

Scalar response yf (x)

One input variable x

Added component of random variation

Computer Data yc = η(x, θ)

Scalar response yc

One controllable input x

One calibration parameter θ
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Outline of Data

Functions for η, δ and ǫ

η(x, θ): unconditional realization of a GP
δ(x): unconditional realization of a GP independent of
η(x, θ)

ǫ is independent Gaussian errors

Using data that comes from a GP we do not have
uncertainty due to using the incorrect model

Allows a more accurate picture of what factors may affect
calibration

NCAR Talk – p. 13/48



Factors to Control

Factors that may affect calibration
Complexity of η(x, θ) and δ(x)

Sensitivity of main effects and interaction in η(x, θ)

Variation of the responses for η, δ and ǫ

Ratio of the variability between η and δ

Similarity of η(x, θ) and δ(x)

All of these will be controlled in a systematic manner for
the simulation study
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Data Generation

Generation of η(x, θ)

Generate a mean zero, unit variance GP on a 26 × 26
grid
wee little bit on the diagonal for numerical stability
Control the roughness of parameters as β = 0.5 or 2 in
the correlation function

exp







d
∑

i=1

−βi(xi − x′

i)
2 +

q
∑

j=1

−βj+d(tj − t′j)
2







Let yc be the vector of 26 · 26 = 676 responses
generated on the grid.
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Data Generation, Cont.

Controlling Sensitivity and Variance of yc

ANOVA decomposition of yc

Compute main effects and interactions
Control V ar(yc) = 20
Scale x, θ and xθ to control sensitivity
Percentage contribution to the total variance of

(x, θ, xθ)

is (0.6, 0.4, 0) and (0.5, 0.25, 0.25)
Add scaled effects of x, θ and xθ together
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Data Generation, Cont.

New yc is sum of the effects of x,θ and xθ

Allows us to control the properties of yc

Code Runs:
Obtain a 26-run Maxi-min Latin hypercube
Collect y values according to the design
Use these values for the computer model data
Use remaining observations for assessing prediction
accuracy
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Design
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Data Generation

Discrepancy Data: δ(x)

Generate a mean zero unit variance GP on a grid of 26
x values
Control the complexity by adjusting the roughness
parameter β

Control the similarity measure (discussed below)

Physical Data: ζ(x) + ǫ(x)

ζ(x) = η(x, θ = 0.48) + δ(x)

ǫ ∼ N(0, σ2
ǫ ), σ2

ǫ = 0.1 or 1

x = {0, 0.2, 0.4, 0.6, 0.8, 1.0} used for the physical sites
Each point is replicated resulting in 12 runs
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Similarity Measure

For a fixed value of θ in the computer model η is a function
of x

The collection of all functions for any value of θ is the
family of computer model curves

If the discrepancy function is similar to one of these
curves calibration may be more challenging

The angle between the discrepancy and the family of
computer model curves measures the similarity
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Similarity Measure

Let δ be the 26 × 1 vector of discrepancy observations

Let C be the 26 × 26 matrix of computer model curves

Empirically C is not of full rank

That is the computer model curves do not span the full
26-D space

Let O be the orthogonal basis vectors for C

Let P = OOT be the projection matrix
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Similarity Measure

Pδ is the projection of δ into C

(I − P )δ is the orthogonal complement

Angle between δ and C is given by

cos φ =
‖Pδ‖

‖δ‖

φ is a measure of the similarity between the δ and the
computer model curves
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Controlling the Similarity

Let
δ̃ = wPδ + (1 − w)(I − P )δ

changing w will change the angle between δ and the
family of computer model curves

For a new angle ϕ, cos ϕ is a quadratic function of w

Solving the quadratic functions yields

w =
‖(I − P )δ‖ cos ϕ

‖Pδ‖ sin ϕ + ‖(I − P )δ‖ cos ϕ
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Discrepancy, Revisited

Generate δ and select a value of ϕ

Set ϕ at 0, 30, 60 and 90 degrees

Compute w and find δ̃

Scale δ̃ to have the same length as δ

Scale δ̃ to have a variance σ2
δ = 5
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Experimental Setup

Setup a designed experiment to control the factors above.
Factor 1: complexity of the computer model
(simple/complex)
Factor 2: interaction between x and θ (no/yes)
Factor 3: regression component for θ (no/yes)

This controls the distance between computer model
curves

Factor 4: Similarity between η and δ (Angle 0,30,60,90)

Investigate all possible combinations of the four factors
(32 runs)

Generate 100 realizations for each factor combination
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Example 1

Computer Model:
βη = (0.5, 0.5)

Sensitivity to (x, θ, xθ) = (0.6, 0.4, 0)

V ar(yc) = 20

No regression component

Discrepancy:
βδ = 0.5

Angles varied between 0-90 degrees
V ar(δ) = 5

Physical Data:
σ2

ε = 0.1
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Angle: 0 degrees
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Angle: 30 degrees
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Angle: 60 degrees
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Angle: 90 degrees
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Example Continued

Based on the above plots calibration has been
unsuccessful

This is only one realization what about others?
Plot the Kernel density estimate of the posterior for
various realizations

Even if calibration is unsuccessful what about prediction
Predict the field mean using the Bayesian posterior
(adjusted for bias)
Predict the field mean using θ = 0.48 and adjust for the
bias using the posterior distribution
compute the root mean squared error since we know
the true field mean.
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Angle: 0 degrees

Kernel Density estimates of posterior of θ for 20 realizations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

NCAR Talk – p. 32/48



Angle: 90 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 90 degrees

Prediction comparison for 100 realizations
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Example 2

Computer Model:
βη = (0.5, 0.5)

Sensitivity to (x, θ, xθ) = (0.5, 0.25, 0.25)

V ar(yc) = 20

Regression component

Discrepancy:
βδ = 0.5

Angles varied between 0-90 degrees
V ar(δ) = 5

Physical Data:
σ2

ε = 0.1

NCAR Talk – p. 35/48



Example 2

Same setup as Example 1

Except there is an interaction between x and θ

Added a separation between the computer model curves

Examine one realization

Look at various realizations for each angle (0, 30,60 90)
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Angle: 60 degrees
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Angle: 0 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 30 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 60 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 90 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Example 3

Complex computer model

Interaction between x and θ

Added a separation between the computer model curves

Examine one realization

Look at various realizations for each angle (0, 30,60 90)
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Angle: 60 degrees
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Angle: 0 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 30 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 60 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Angle: 90 degrees

Kernel Density estimates of posterior of θ for 20 realizations
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Observations

Orthogonality helps calibration

However: orthogonality is rarely the case

Promising results for angles of 60 degrees

Orthogonality makes it hard to control the complexity of
the discrepancy

Interaction between x and θ helps calibration

Complexity of code seems to have a limited effect on the
ability to calibrate

Whatever the situation Calibration is VERY difficult
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