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1. The turbulence problem

“The turbulence problem is an age-old topic of discussion among fluid dynamicists. It is not a problem
of physical law; it is a problem of description.

Turblence is a state of fluid motion, governed by known dynamical laws - the Navier-Stokes equations
...”

P. A. Durbin and B. A. Pettersson Reif (2000),

Statisitical Theory and Modeling for Turbulent Flows. Wiley.

“The Navier-Stokes equation probably contains all of the turbulence”.

U. Frisch (1995),

Turbulence. Cambridge Univ. Press.
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• The Navier-Stokes equation

∂v

∂t
+ v · ∇v = −∇P + ν∇2v + F

∇ · v = 0

where

P = P (s, t) is the pressure at location s and time t,

F an external force,

ν the kinemate

The Navier-Stokes equations are formally deterministic.
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2. Why are probability and statistics methods involved in this type of

non-random systems?

• No mathematical solution so far.

• Experimental data, measure error −→ Statistical method

• Similar to that we use Monte Carlo methods to evaluate, for instance,

∫ 1

0

sin x

x
dx
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3. Kolmogorov 41 theory

In the statistical theory of turbulence, it is customary to assume that

the velocity field of a fluid in turbulent flow may be represented by

a random vector field

(v1(s; t), v2(s; t), v3(s; t))

where

s = (s1, s2, s3) spatial coordinate

t time
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A real-valued random field defined over a space-time domain S × T

Z(s; t), s ∈ S, t ∈ T

◦ Mean function

µ(s; t) = EZ(s; t)

◦ Covariance function

C(s1, s2; t1, t2) = E[{Z(s1; t1)− µ(s1; t1)}{Z(s2; t2)− µ(s2; t2)}]

◦ Variogram, structure function (variance of the increments)

γ(s1, s2; t1, t2) = 1
2 var{Z(s1; t1)− Z(s2; t2)}, s1, s2 ∈ S, t1, t2 ∈ T
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The existence of the covariance function implies that of the variogram, with

γ(s1, s2; t1, t2) =
1

2
{C(s1, s1; t1, t1) + C(s2, s2; t2, t2)} − C(s1, s2; t1, t2),

but not vice versa.
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A fractional Brownian motion

An intrinsically stationary Gaussian process {Z(t), t ∈ R} with variogram

γ(t) = |t|α, t ∈ R,

and covariance
C(t1, t2) = |t1|α + |t2|α − |t1 − t2|α, t1, t2 ∈ R,

where 0 < α ≤ 2.

The Fourier transform of γ(t), not C(t1, t2),

|t|α ∝
∫ ∞

0
ω−(α+1){1− cos(tω)}dω

When α = 2
3 , it leads to Kolmogorov 2

3 law or −5
3 law for a temporal margin
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4. Homogeneity (stationarity)

Stationary in space and time

if µ(s; t) is a constant, and

C(s1, s2; t1, t2) depends only on s1 − s2 and t1 − t2

Write C(s1, s2; t1, t2) = C(s1 − s2; t1 − t2)

Stationary in space

if µ(s; t) does not depend on s, and

C(s1, s2; t1, t2) depends only on s1 − s2 and t1, t2

Stationary in time

if µ(s; t) does not depend on t, and

C(s1, s2; t1, t2) depends only on s1, s2 and t1 − t2
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Intrinsic stationarity

Intrinsically stationary in space and time

if γ(s1, s2; t1, t2) depends only on s1 − s2 and t1 − t2

Write γ(s1, s2; t1, t2) = γ(s1 − s2; t1 − t2)

Intrinsically stationary in space

if γ(s1, s2; t1, t2) depends only on s1 − s2 and t1, t2

Intrinsically stationary in time

if γ(s1, s2; t1, t2) depends only on s1, s2 and t1 − t2
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5. Isotropy

Isotropic function: g(‖s‖),

where ‖s‖ =

(
d∑

k=1
s2
k

) 1
2

, s ∈ Rd.

Geometrically anisotropic function: g(‖As‖),

where A is a d× d matrix.

There are many reasons for the popular use of the isotropic or geometrically anisotropic covariance
function and variogram in various areas.

The simplest reason would be just as that the Euclidean distance is the most popularly used distance.

A less known reason is that an isotropic or geometrically anisotropic model would be the only choice
in certain circumstances, for instance, when the underlying random field is smooth enough.
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A purely spatial version (Ma (2007), PAMS):

Let C(x), x ∈ R, be an even and twice continuously differentiable function, and

let γ(s), s ∈ Rd, be a homogeneous function, i.e.,

γ(αs) = |α|γ(s), ∀s ∈ Rd, ∀α ∈ R.

If C(γ(s)), s ∈ Rd, is a covariance function, then γ(s) must be of the form

γ(s) = ‖As‖, s ∈ Rd,

where A is a d× d matrix.
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An interpretation:

Let {Z(s), s ∈ Rd} be a random field with covariance C(γ(s)). For fixed s0
2, . . . , s

0
d, the univariate

projection {Z(s1, s
0
2, . . . , s

0
d), s1 ∈ R} has the covariance

C(γ(s1, 0, . . . , 0)) = C(s1γ(1, 0, . . . , 0)), s1 ∈ R.

Its derivative exists in the mean square sense,

lim
h→0

E
{Z(s1 + h, s0

2, . . . , s
0
d)− Z(s1, s

0
2, . . . , s

0
d)

h
− ∂

∂s1
Z(s1, s

0
2, . . . , s

0
d)

}2
= 0,

and possesses the covariance −C ′′(s1γ(1, 0, . . . , 0))γ2(1, 0, . . . , 0).

A random field with such a smooth property is nothing but an isotropic (or geometrically anisotropic)
one.
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Example 1
C(x) = θ exp(−α1x

2) + (1− θ) exp(−α2x
2), x ∈ R,

where α2 > α1 > 0.

Since C ′′(x) exists everywhere on the real line, neither

C(s) = θ exp(−α1|s|2) + (1− θ) exp(−α2|s|2), s ∈ Rd,

where |s| =
d∑

k=1
|sk| is the `1-norm,

nor

C(s) = θ exp[−α1{max(|s1|, |s2|)}2] + (1− θ) exp[−α2{max(|s1|, |s2|)}2], s ∈ Rd,

could be a covariance function in Rd.

The isotropic function

C(s) = θ exp(−α1‖s‖2) + (1− θ) exp(−α2‖s‖2), s ∈ Rd,

is the covariance function of a Gaussian random field if and only if{
1−

(
α2

α1

)d
2

}−1

≤ θ ≤ 1.
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Example 2
C(x) = 1− {1− exp(−α1|x|)}{1− exp(−α2|x|)}, x ∈ R,

is twice continuously differentiable on R, where α1 > 0, α2 > 0.

When γ(s) is homogeneous, the only chance for C(γ(s)), s ∈ Rd, to be a covariance function is

γ(s) = ‖As‖, s ∈ Rd,

where A is a d× d matrix.
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A space-time version (Ma (2007)):

Let an even function C(x, t), x ∈ R, t ∈ T have continuous second-order derivative with respect to
x, where T ⊂ R, and

let γ(s), s ∈ Rd, be a homogeneous function, i.e.,

γ(αs) = |α|γ(s), ∀s ∈ Rd, ∀α ∈ R.

If C(γ(s), t), s ∈ Rd, t ∈ T , is a covariance function on Rd × T ,

then γ(s) must be of the form
γ(s) = ‖As‖, s ∈ Rd,

where A is a d× d matrix.
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6. Log-Gaussian random field

A positive random field {Z(s), s ∈ D} is said to be a log-Gaussian random field if {ln Z(s), s ∈ D}
is a Gaussian random field.

The finite-dimensional distribution function of {Z(s), s ∈ D},

P (Z(s1) ≤ u1, . . . , Z(sn) ≤ un)

=

{
P (ln Z(s1) ≤ ln u1, . . . , ln Z(sn) ≤ ln un), if u1, . . . , un > 0,
0, otherwise,

relates closely to a Gaussian distribution function, and a log-Gaussian random field is thus charac-
terized by it mean and covariance functions, just like a Gaussian random field.
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But, unlike a Gaussian random field, the mean and covariance function sof a log-Gaussian random
field are often tied each other.

(i) If {Z(s), s ∈ D} is a log-Gaussian random field with mean µ(s) and covariance C(s1, s2), then
µ(s) is positive, C(s1, s2) > −µ(s1)µ(s2), and C(s1, s2) and ln{1 + µ−1(s1)µ

−1(s2)C(s1, s2)} are
positive definite on D.

(ii) Conversely, if µ(s), s ∈ D, is a positive function, and ln{1 + µ−1(s1)µ
−1(s2)C(s1, s2)} is positive

definite on D, then there exists a log-Gaussian random field with mean µ(s) and covariance
C(s1, s2).

The positive definiteness is a necessary but not sufficient condition for a real function to be the
covariance function of a log-Gaussian random field.
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Example 3

The function
C(x1, x2) = min(x1, x2), x1, x2 ≥ 0,

is known to be the covariance function of the Wiener or Brownian motion process on [0,∞). It
is associated with a log-Gaussian stochastic process on [0,∞) whose mean could be an arbitrary
positive constant, since

ln{1 + µ−2C(x1, x2)} = min{ln(1 + µ−2σ2x1), ln(1 + µ−2σ2x2)}, x1, x2 ≥ 0,

is positive definite on [0,∞) for every positive constant µ.
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Example 4

The function

C(x) =


1, x = 0,
θ, x = ±1,
0, x 6= 0,±1, x ∈ Z,

is the covariance function of a stationary first-order moving average Gaussian process on Z if and
only if |θ| ≤ 1

2 .

It is the covariance function of a stationary log-Gaussian process with a positive mean µ if and only
if

{(1 + µ−2)−
1
2 − 1}µ2 ≤ θ ≤ {(1 + µ−2)

1
2 − 1}µ2,

in such a way µ is tied up with θ or the covariance C(x). The above domain of θ is tighter than
|θ| ≤ 1

2 since

−1

2
< {(1 + µ−2)−

1
2 − 1}µ2, and {(1 + µ−2)

1
2 − 1}µ2 <

1

2
.
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Dimensionality and permissibility

Example 5 (Matheron (1989))

The function
C(s) = exp(−‖s‖), s ∈ Rd,

is positive definite.

When d = 1, it is the covariance function of a stationary log-Gaussian process with an arbitrary
mean µ > 0.

When d ≥ 2, it is the covariance function of a stationary log-Gaussian process with mean µ ≥ µ0,
where the threshold µ0 is a positive constant, but µ0 =?.
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A conjecture:

Assume that a positive function C(s1, s2) on D is the covariance function associated with a log-
Gaussian random field whose mean is µ0. Then, for any positive constant µ ≥ µ0, C(s1, s2) is also
the covariance function on D associated with a log-Gaussian random field whose mean is µ.

Mandelbrot, B. B. (1972).

Possible refinement of the lognormal hypothesis concerning the distribution of energy dissipation in
intermittent turbulence. In: Statistical Models and Turbulence, pages 333-351, Edited by J. Ehlers,
et al.. Lecture Notes in Physics, #12. Springer.
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Too smooth ?

Example 6 (Matheron (1989))

The function
C(s) = exp(−‖s‖2), s ∈ Rd,

is positive definite, and infinitely differentiable in Rd.

But, it is NOT associated with any log-Gaussian random field.

24



Long-range dependence

Assume that γ(s1, s2) is a variogram for a Gaussian random field on D.

(i) If κ is a positive constant with 0 < κ ≤ 1, then each of the following functions is the covariance
function for a log-Gaussian random field on D with any positive constant mean

C(s1, s2) = {1 + γ(s1, s2)}−κ, s1, s2 ∈ D, (1)

C(s1, s2) = {1 + ln(1 + γ(s1, s2))}−κ, s1, s2 ∈ D, (2)

C(s1, s2) =
{ α1 + α2γ(s1, s2)

1 + α1 + α2γ(s1, s2)

}κ

, s1, s2 ∈ D. (3)

(ii) If κ is a positive constant, then (1) is a covariance function for a Gaussian random field on D.

The function (1), (2), or (3) is power-law decay or has long-range dependence, for which the reason
is based on a known fact that a variogram γ(s1, s2) behaves at most like ‖s1 − s2‖2.
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Questions

1. The sum or difference of two independent log-Gaussian random fields may not be a log-Gaussian
random field.

Is the sum of two covariance functions of log-Gaussian random fields still a covariance function as-
sociated with a log-Gaussian random field?

2. The product or ratio of two independent log-Gaussian random fields is also a log-Gaussian random
field.

Is the product of two covariances of log-Gaussian random fields still a covariance function associated
with a log-Gaussian random field?
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8. Conclusions
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