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Observations

Ongoing information is being archived at
http://www.maths.bris.ac.uk/~mazjcr/TIEGCM/
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Magnetic D-component

1. Amplitude of the migrating tide, unif on [0, 36000]

2. Phase of the tide, periodic, unif on [0, 12]

3. Minimum electron density, log10 unif on [3, 4]
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Methodology

Goal of calibration:

Find optimal tuning parameters that give best out-
puts.

Denote input parameters z = (x, u). Two categories:

• known parameters (controllable parameters x)

• unknown parameters (tuning or calibration param-
eters u).

Here:

• controllable parameters x is time (and spatial lo-
cation)

• calibration parameters u are: amplitude, phase
and minimum electron density
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• Computer experiments are expensive and time con-
suming.. Small subset of the calibration parame-
ters: design.

• In between, emulate the computer model by a
Gaussian process response-surface (Sacks et al.
1989, Welch et al. 1992, Morris et al. 1993).
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Design:

• yM(x, u) the output of the computer model for the
input z = (x, u).
yM(x, u) approximation of the reality yR(x).

• Computer model run at inputs (x, u) in the design
DM .

• Field data collected at inputs x in the design DF .

• The choice of the design DM is done through a
latin hypercube sampling. This random design is
intended to cover as much input space as possible.

• 30 runs of TIE-GCM for the 3 parameters
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Representations of model bias and uncertainty: Kennedy
and O’Hagan (2001)

Description of the bias bu(x) and observation error ε:

yR(x) = yM(x, u) + bu(x) (1)

yF(x) = yR(x) + ε (2)

Note:

• We can add a noise εη that represents the uncer-
tainty in the code itself (usually small).

• Goal is to find u∗ that gives best approximation of
reality

• Confounding between u and bu(x)
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Gaussian stochastic process (GASP)

• Z(z), z ∈ Rp good approximation of the outputs of
the computer model.

• GASP unknown function, except at the design
points.

• Z(z) is N(µ, σ2) with correlation function:

c(z, z′) = exp(−
p∑

k=1

βk |zk − z′k|
αk).

• The parameters µ, σ2, β1, .., βk, α1, .., αk are constrained
(e.g. 1 ≤ αk ≤ 2..here we choose = 2).

• Hyperparameters describe the priors on bu, and ε, εη
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Estimation of the parameters

For one location: API

Likelihood: We assume i.i.d. normal noises and
GASP-induced correlation structures for yR(x) and
bu(x).

We rescale the parameters on [0,1] . We work with
log-likelihood.

Estimation

1. Through maximum likelihood (hard!)

2. Bayesian procedure

Here Bayesian procedure,
MCMC approach with Metropolis-Hastings algorithm
to draw realizations from the posterior distribution.
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Priors

• Uniform for calibration parameters u1, u2, u3.

• Beta for the correlations

• Gamma for the precisions

MCMC iterations: 10,000. Computing time: 5 hours.

From joint posteriors we get the following:
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Results

Emulator and RAQAST outputs

• Posterior of yM(x): “emulator”

• Posterior of yM(x) + bu(x): “prediction”
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Bias
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Calibration

Posteriors of u give:
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Figure 1: Amplitude
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Figure 2: Phase ..wrong!
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Figure 3: minimum electron density
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Functional calibration

Time series:

• PCA (Higdon et al., JASA, 2007)

• wavelets (Bayarri et al., Ann. Stat., 2007)
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Periodic splines

• For tractability, it is very convenient if the model-
evaluations and model-outputs are ‘rectangular’,
i.e., they have an outer-product structure where
the full set of evaluations can be laid out with rows
corresponding to inputs and columns to outputs.

• We ‘regularise’ the model-outputs at each eval-
uation by fitting them with a periodic spline and
then holding the spline at a fixed set of knots on
[0,24]. We choose the knots to be dense where we
want higher resolution; i.e., around the shoulders.

• We predict the outputs at the knots, and then
extend them over the whole of [0,24] using the
periodic spline through the knots (we can quantify
uncertainty by sampling).
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• For basis functions on [0,24] we use the right
eigenvectors of the SVD of the regularised out-
put matrix (aka Empirical Orthogonal Functions,
or EOFs).
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Basis for JRO-drift
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Calibration for JRO-drift
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Emulator for JRO-drift

• regressors in time: EOFs

• regression in inputs: Legendre monomials up to
second order for AMP and EDN, and two Fourier
terms for PHZ

• circular correlation function
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Future plans

• use 7 calibration parameters

• use spatial information

• Modular Bayes for faster computations: use repli-
cates for field uncertainties..only
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