Serge Guillas School of Mathematics Georgia Institute of Technology

Jonathan Rougier University of Bristol

Big Thanks to Crystal Linkletter (SFU-SAMSI summer school)

Supported by the Statistical and Applied Mathematical Sciences Institute

- 1. Observations
- 2. Methodology
- 3. Results

# Observations

# Ongoing information is being archived at

http://www.maths.bris.ac.uk/~mazjcr/TIEGCM/

#### Location of sites for MAGDDR outputs



### **Magnetic D-component**

- 1. Amplitude of the migrating tide, unif on [0, 36000]
- 2. Phase of the tide, periodic, unif on [0, 12]
- 3. Minimum electron density, log10 unif on [3, 4]

# Goal of calibration:

Find optimal tuning parameters that give best outputs.

Denote input parameters z = (x, u). Two categories:

- known parameters (controllable parameters x)
- unknown parameters (tuning or calibration parameters *u*).

Here:

- controllable parameters x is time (and spatial location)
- calibration parameters *u* are: amplitude, phase and minimum electron density

- Computer experiments are expensive and time consuming.. Small subset of the calibration parameters: design.
- In between, emulate the computer model by a Gaussian process response-surface (Sacks et al. 1989, Welch et al. 1992, Morris et al. 1993).

### Design:

•  $y^{M}(x, u)$  the output of the computer model for the input z = (x, u).

 $y^{M}(x, u)$  approximation of the reality  $y^{R}(x)$ .

- Computer model run at inputs (x, u) in the design  $D^M$ .
- Field data collected at inputs x in the design  $D^F$ .
- The choice of the design  $D^M$  is done through a latin hypercube sampling. This random design is intended to cover as much input space as possible.
- 30 runs of TIE-GCM for the 3 parameters



# Representations of model bias and uncertainty: Kennedy and O'Hagan (2001)

Description of the bias  $b_u(x)$  and observation error  $\varepsilon$ :

$$y^{R}(x) = y^{M}(x, u) + b_{u}(x)$$
 (1)

$$y^{F}(x) = y^{R}(x) + \varepsilon$$
 (2)

Note:

- We can add a noise  $\varepsilon_{\eta}$  that represents the uncertainty in the code itself (usually small).
- $\bullet$  Goal is to find  $u^*$  that gives best approximation of reality
- Confounding between u and  $b_u(x)$

Gaussian stochastic process (GASP)

- $Z(z), z \in \mathbb{R}^p$  good approximation of the outputs of the computer model.
- GASP unknown function, except at the design points.
- Z(z) is  $N(\mu, \sigma^2)$  with correlation function:

$$c(z,z') = exp(-\sum_{k=1}^{p} \beta_k |z_k - z'_k|^{\alpha_k}).$$

- The parameters  $\mu, \sigma^2, \beta_1, ..., \beta_k, \alpha_1, ..., \alpha_k$  are constrained (e.g.  $1 \le \alpha_k \le 2$ ...here we choose = 2).
- Hyperparameters describe the priors on  $b_u$ , and  $\varepsilon, \varepsilon_\eta$

## **Estimation of the parameters**

For one location: **API** 

<u>Likelihood</u>: We assume i.i.d. normal noises and GASP-induced correlation structures for  $y^{R}(x)$  and  $b_{u}(x)$ .

We rescale the parameters on [0,1]. We work with log-likelihood.

Estimation

- 1. Through maximum likelihood (hard!)
- 2. Bayesian procedure

Here Bayesian procedure, MCMC approach with Metropolis-Hastings algorithm to draw realizations from the posterior distribution.

#### **Priors**

- Uniform for calibration parameters  $u_1, u_2, u_3$ .
- Beta for the correlations
- Gamma for the precisions

MCMC iterations: 10,000. Computing time: 5 hours. From joint posteriors we get the following:

# Results

## **Emulator and RAQAST outputs**

- Posterior of  $y^M(x)$ : "emulator"
- Posterior of  $y^M(x) + b_u(x)$ : "prediction"

**Bias** 



## Calibration

Posteriors of u give:



Figure 1: Amplitude



Figure 2: Phase ..wrong!



Figure 3: minimum electron density

Time series:

- PCA (Higdon et al., JASA, 2007)
- wavelets (Bayarri et al., Ann. Stat., 2007)

#### **Periodic splines**

- For tractability, it is very convenient if the modelevaluations and model-outputs are 'rectangular', i.e., they have an outer-product structure where the full set of evaluations can be laid out with rows corresponding to inputs and columns to outputs.
- We 'regularise' the model-outputs at each evaluation by fitting them with a periodic spline and then holding the spline at a fixed set of knots on [0,24]. We choose the knots to be dense where we want higher resolution; i.e., around the shoulders.
- We predict the outputs at the knots, and then extend them over the whole of [0,24] using the periodic spline through the knots (we can quantify uncertainty by sampling).

• For basis functions on [0,24] we use the right eigenvectors of the SVD of the regularised output matrix (aka Empirical Orthogonal Functions, or EOFs).

# **Basis for JRO-drift**



# Calibration for JRO-drift



**Emulator for JRO-drift** 

- regressors in time: EOFs
- regression in inputs: Legendre monomials up to second order for AMP and EDN, and two Fourier terms for PHZ
- circular correlation function



- use 7 calibration parameters
- use spatial information
- Modular Bayes for faster computations: use replicates for field uncertainties..only