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Caveat: lllustrative rather than quantitative, applied rather than theoretical
Based on Arellano and Hess, GRL, 2006 and Arellano et al., ACPD, 2007
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Tropospheric Chemistry Cycles
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Lightning
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. Greenhouse gases
- Primary Pollutants - Less Reactive Radicals
- Natural Biogenic Species . Reflective Aerosols



CO Distribution (t., ~ 1-2 months)

MOPITT CO (V3) Column Apr 1-30, 2000 MOPITT CO (¥3) Column Jul 16-31, 2000
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Introduction to Atmospheric Chemistry, http://www.eos.ucar.edu/mopitt/data
Jacob, D. J., 1999




Modeling the evolution of CO concentration

For each model grid, the change in the concentration of CO is determined by
a) emissions, b) transport, ¢) chemical loss/production, and d) deposition.

d[cO] /d[CO] 9[CO] 9[CO] a[CO]
= (5 misaon ™ 5 Damspore ™ 08 iy ™ )
dt ot emission ot transport ot chemistry ot deposition
€.g e.g l

—U_')V[CO]_ _kCO—OH[CO][OH] LOSS
Advection key,-o4lCHJ[0H]  Production
Letting X be CO concentration, U emission, and O other variables in the model:

Xi 1 = (X, U, 0)

For faster model integration, [OH] is typically prescribed. The model can also
be driven by assimilated meteorology or reanalysis (offline-CTMSs).

Problem: Uncertainties exist in modeling the emission, parameterizing
convection and boundary layer processes ...



Observations of CO Z;= h;(x;) + &

In-Situ Measurements Remote-sensed Measurements
Mleasurement Programs - MOPITT CO (v3) 700hPa 2000-03-03
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MOPITT CO Retrievals Zj: Xiet (instead of radiance)

Level 2 CO product - Retrieved CO profiles with 7 levels
(surface, 850, 700, 500, 350, 250, 150 hPa)

<;> Xret = Xa + K(yo B Hxa)

l l l prior CO

Transmission [;J . . .
CO profile ~ radiances profile

oh / 8CO (from radiative
transfer model)

Posterior diagnostic (averaging kernel)

A7 = KH

8. Pacific, 2000/12/02, Daytime 8. Pacific, 2000/12/02, Nighttime
100

Level (mb): Surface 850 700 Level (mb): Surface 850 700

For our application
h; (X;) = Ax; + (I-A)X,

8j — retrieval error




Science Applications (global scale):
1) Inverse modeling of CO sources

2) Ensemble-based CO assimilation (using
DART/CAM-Chem chemical data assimilation
system)



1) Inverse Modeling of CO Sources (method)

e.g. [ emission | MOPITT ] ~[ MOPITT | emission ] [ emission ]
N(ﬁ, ﬁu) N(HX, R) N(.uu» Pu)

We solve for regional source scaling factors

" " BIOMASS BURNING

Scaling factors can be time-dependent or
time-independent (based on Enting, 2002)

Note that the posterior mean is sensitive to
data, prior estimates, error specification and

model leading to persistent discrepancies In Biogenic (GEOS-CHEM)
source estimates — —
(No TransCom framework for CO) 02 05 1 2 5 10 20 5
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Sensitivity of source estimates to treatment of
GCTM transport

- Use 3 ‘different’ models with the same prior source
distribution

1) MOZART with NCEP reanalysis
2) MOZART with ECMWEF reanalysis
3) GEOSChem with GMAO assimilated meteorology

MOZART and GEOSChem have different parameterization for
convection and boundary layer. Similar advection scheme.

- Conduct 3 sets of inversions for 14 time-independent
source scaling factors.



Relative % Difference
In Zonal Mean CO Concentration

MOZART4
(NCAR/NCEP)

MOZART4
(ECMWF/ERAA40)

GeosChem
(GMAO/GEOS)

>30 %

Arellano and Hess (2006)



Top-down CO Emission Estimates
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2) Global Chemical Data Assimilation System

(DART/CAM)
GCTM (CAM)
Community Atmosphere Model (CAMS3.1) with simplified CO chemistry
(used the finite-volume dynamical core at 2°x2.5° horizontal & 26 vertical levels)

- ensembles of CO total emissions (based on MOZARTV4 standard emission)
- ensembles of CAM initial conditions (based on previous CAM climatological runs)

EnKF Package (DART)

DART with temperature (T), horizontal winds (U,V), specific humidity (Q), cloud ice,
cloud water, and CO as state variables

Sample Obs Locations
ObS ervati ons Radiosonde Temperature Satellite-derived Winds MOPITT CO

NCEP BUFR (used a
subset that includes
radiosonde T, U,V and
satellite U,V)

MOPITT CO retrievals
(used 700 hPa for now)
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Ensemble Mean and Spread
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DART/CAM vs GFS Winds

DART/CAM U Wind 04/06 500hPa  GFS U Wiljd O4/O§ 500hPa
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INTEX-B Field Campaign

SPRING 2006

The NASA Intercontinental Flight tracks during the first half of INTEX-B
Chemical Transport Experiment
B 2" phase (INTEX-B) was
aimed at sampling the Asian
pollution outflow over Hawaii,
Alaska and Seattle during April
and May 2006.

- Regional to global chemical
transport models (GCTMS)
were used extensively to aid
in flight planning (i.e. chemical
forecasts).

—> Opportunity to verify model
performance and assimilation
system.

500 hPa 1000




DART/CAM CO vs INTEX-B CO

C-130 Flight 17-22 (April 17 - May 1 2006)
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DC-8 Flight 10-14 (April 17 - May 1 2006)
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Observed CO variability and gradients during INTEX-B are better captured by the
model using MOPITT CO assimilation.




Impact of Assimilation in Modeled CO

Ensemble Mean CO w/o MOPITT Assim
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Assimilating MOPITT CO
provides important constraints
to regional CO distribution in
the troposphere...
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and provides insights on the
fidelity of the model to
represent CO transport and
emissions
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Present and Future Directions

1) Joint state-parameter estimation using DART/CAM

2) Assimilation of multi-sensor observations

3) Assimilation of multi-species observations incl. aerosols

4) Observation System Simulation Experiments (OSSES) for
current and future chemical observing systems

The A-Train

T

CALIPSO

131:15 o PO .
PARASOL 3115 o ¥ (iougsat

, > Agua
1:33 p 1:31
$ ‘ =3 1.30’..‘?'




