Micro Talk on Physical-Statistical Modeling

All models are wrong, some are useful - George Box

Rajib Paul

The Ohio State University
Bayesian Perspective

1. Data Model \[Z \mid X, \theta \]

\[Z = h(X) + e \]

\(X = \text{true/latent process (unobserved)} \)

\(e = \text{measurement error} \)

Examples:

- \(h = HX, H = \text{Incidence Matrix} \)
- Observations from different scales
Bayesian Perspective

2. **Process Model** \([X \mid \theta]\)
 - approximate science leads to uncertainty

 ● **CO2 Model** :
 \[x_{i+1} = \phi(x_i) + G(u) + \epsilon_{i+1} \]

 ● **Ice Flow Velocity** (Paterson, 1994)
 \[U = u_s + 2AH \frac{\tau^n}{n + 1} + \epsilon, \]

 where,

 \[\tau = -\rho g H \frac{dS}{dx} \]

 and

 \[H = S - B \]
Display of the Data Set

- Surface and Basal Topography (m)
- Distance (m)
- Velocity (m/yr)
Bayesian Perspective

3. Parameter Model [θ]

- Bayes’ Theorem:

\[[X, \theta \mid Z] \propto [Z \mid X, \theta][X \mid \theta][\theta] \]

Comments

- Stages 1. vs 2.: Merging approximate scientific laws with Statistical uncertainty management.
- Non-identifiability of measurement error precision and process error precision
- Box, Hunter and Hunter (1978): Mechanistic Modeling
Thanks!!