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Generalized Poisson regression

Let Yi , . . . ,Yn be observed counts and X = [x1, . . . , xn] be a
matrix of covariates associated with each observation. Also, let
S = [s1, . . . , sn] and t = (t1, . . . , tn)

′ be the locations associated
with Yi , . . . ,Yn, indexed, say, by latitude, longitude, and time.

yi |λi ∼ Pois(λi )

log λi (xi ; si , ti ) = µi (xi ) + ui (si , ti ) + εi

≡ bi

u(S, t)|θ ∼ N(0,Σ(θ;S, t))

εi |η ∼ iid N(0, η) (1)



Another parametrization

We marginalize over the ε’s and the u’s because it will be more
convenient for computation

yi |λi ∼ Pois(λi )

log λi (xi ; si , ti ) ≡ bi

b(X;S, t)|θ,µ, η ∼ N(µ(X),Σ(θ;S; t) + ηI) (2)



The parameters

So we have to update

• The fixed effects µ(X)

• The random effects, contained in the log means b

• The covariance parameters θ and η

None of which are straightforward.



The ridiculous Gibbs sampler
What would a Gibbs sampler look like?

[b1|y,µ,θ,bi 6=1]

[b2|y,µ,θ,bi 6=2]

...

[bgazillion|y,µ,θ,bi 6=gazillion]

[µ1|y,b,θ, µi 6=1]

...

[µgazillion|y,b,θ, µi 6=gazillion]

[α|y,µ,b, σ2, η]

[σ2|y,µ,b, α, η]

[η|y,µ,b, α, σ2]



Geometric whammy
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Approximating the log likelihood

• Problem: we can’t compute the log likelihood function

• Solution 1: Compute many “smaller” log likelihoods and add
them together

• Solution 2: Introduce zeros into the covariance matrix and use
sparse matrix “magic”
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What I think is cool about what we’re doing

• We can can use data mining models inside an MCMC sampler

• Our MCMC sampler tunes itself

• We have a bunch of tricks to deal with high-dimensional data
all working together
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