
Carbon Cycle:

An Inverse Problem

Inez Fung



Outstanding Questions

• Only half of the CO2

produced by human

activities is remaining in

the atmosphere

• Where are the sinks that

are absorbing over 40%

of the CO2 that we emit?

– Land or ocean?

– Eurasia/North America?

• Why does CO2 buildup

vary dramatically with

nearly uniform

emissions?

• How will CO2 sinks

respond to climate

change?
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Atmospheric Inverse Modeling of CO2
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An Atm Carbon

Cycle Model

What we’ve got:

• Sources/Sinks S known approximately or not well
constrained

• Cobs (actually mixing ratios X
obs

) biweekly, at ~100
stations near the surface

• “Decent” transport model (winds, turbulent mixing)

What we want:

• where has the fossil fuel CO2 gone?  {Better estimates
of the magnitude and distribution of S (e.g. land
exchange)}

• How did the fossil fuel CO2 get there? {improved
understanding and representation of processes, e.g.

• Fab=LUE*AvailableLight; Fba=exp( T);
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Eq NPSP
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What weWhat we’’ve got: (1) The Model:  NCAR climate modelve got: (1) The Model:  NCAR climate model

Source:  Source:  Fossil fuel combustionFossil fuel combustion

(6 (6 PgC/yPgC/y))
C(x,y,z) at steady state



What We’ve got: The data:  Atm CO2 (for now)

Discrete surface
flasks (~weekly)

Continuous
surface (hourly)
observatories

Tall towers
continuous
(hourly)

Aircraft
profiles
(~weekly)



What We’ve Got: (3) The Flux Priors
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Example I: A Simpler Model - reduce 3D atm

to 2 hemisphere



Example I:  Interhemispheric Mixing:

Two-Box Model, everything is perfect.
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Interhemispheric exchange time  

determined from inert tracers (e.g.

CFC, with Ss=0):  ~1-2 years
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Ex I: 2-Box Model Applied to the Carbon Cycle
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Ex I: 2-Box Model Applied to the Carbon Cycle
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Ex I: 2-Box Model Applied to the Carbon Cycle
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Where are the Carbon Sinks?
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• Premise: Atm CO2 = linear
combination of response to
each source or sink

• Divide surface into “basis
regions”

• Specify unitary source (e.g.
1 PgC/year) each year from
each region

• Simulate atm CO2 “basis”
response with atm general
circulation model

• Reconstruct fluxes and
concentrations:  unknown μk

Example II:  Perfect 3D atm circulation model.
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(1)  Forward Step

  

S = μk
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Ex II:  (Step 2)  Bayesian Inversion:  perfect

circulation model

•Obs. Network –

–mainly remote marine locations

Trying to infer information over land

Undetermined; non-unique solutions; prior estimates of
source/sinks as additional constraints

Inversion:  Seek the optimal
source/sink combination {μk} to
match atmospheric CO2 data:
minimize

  

J =
[Cobs(stn) μk
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Ex IIa: Posterior from

many “perfect”

circulation models

Gurney et al. Nature 2005

μk
prior± k

prior

{μmk
posterior± mk

posterior}

Model m:

X Mean,std_dev (μmk
posterior)

Mean ( mk
posterior )

Little innovation in tropics, Africa

Great innovation in S. Ocean



What next?  Anticipating satellite data
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transport Fluxes, parameters
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Separating transport, initial conditions & surface fluxes

xb
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= M(xa
i )  Analysis at time i => forecast at time i+1

4D Variational methods:  adjust initial
conditions to better match future data
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