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Dynamos are studied by astrophysical, planetary, and fusion communities but the differences between
dynamo types can be a source of confusion. To elucidate the relationship between the different dynamos,
I divide dynamos into three categories e.g. [1]: 1. Nonhelical flow-driven dynamos which amplify fields on
scales at or below the driving turbulence; 2. Helical flow-driven dynamos which amplify or sustain large
scale magnetic fields in an otherwise turbulent flow. Traditional stellar, planetary, and Galactic dynamos
aimed at explaining cycle periods and large-scale fields fit into this category; 3. Magnetically dominated
helical dynamos, which sustain the large-scale magnetic field against resistive decay and evolve the magnetic
geometry toward the lowest energy state. All three types occur in astrophysics whereas laboratory plasma
dynamos in fusion devices are of type 3. Type 1 dynamos requires no helicity of any kind.

Focusing on type 2 and 3 dynamos, which both require a mean magnetic field aligned electromotive force,
I will then discuss how different limits of a unified set of equations for magnetic helicity evolution reveal
simple dynamos of both types. Dynamos that systematically amplify or sustain fields on spatial or temporal
scales larger than those of the fluctuations involve a spatial or spectral transfer of magnetic helicity. (first
apparent in Ref. [2] for type 2 dynamos.) Examples of steady-state vs. time dependent dynamos in the
presence and absence of boundary terms and the influence on dynamo saturation will be discussed. For the
simplest closed volume cases, type 2 dynamos involve the spectral segregation of opposite signs of magnetic
helicity, while type 3 dynamos involve transport of net magnetic helicity from small to large scales.

The magnetic helicity framework and associated results are part of a growing body of work that reflects
how magnetic helicity has emerged as a useful tool for understanding the operation and nonlinear evolution of
large-scale dynamos (see [3] for a review). It is important to distinguish practical modeling of planetary and
stellar dynamos, where the immediate aim is to specifically reproduce observations, from idealized studies of
simple dynamos aimed at understanding the theoretical principles of nonlinear saturation. It is hoped that
insights gained from the latter can eventually be incorporated into the former.

In this context, idealized type 2 MHD dynamo simulations of α
2 dynamos in periodic boxes by several

groups e.g. [4, 5] have shown that when MHD turbulence is forced with sufficient kinetic helicity, the
saturated magnetic energy spectrum evolves from having a single peak below the forcing scale to become
doubly peaked, with one peak at the system (= largest) scale and one at theforcing scale. If we are eventually
to understand the nonlinear saturation in a realistic helical dynamo with a practical theory, we should assess
whether such a theoretical framework can first explain the saturation in simple numerical experiments.
Toward this end, finite scale approximations to the dynamical evolution of the magnetic spectra have proven
to be useful. Simple two scale dynamical models incorporating magnetic helicity evolution capture saturation
quite well [6]. However, modeling the relative shift of the small-scale magnetic peak with respect to the small
scale velocity peak at early times requires at least a three scale helical dynamo theory [7]. The three scale
approach does show that the small-scale helical magnetic energy first saturates at very small scales, but then
successively saturates at larger values at larger scales, eventually becoming dominated by the forcing scale.
The transfer of the small-scale peak to the forcing scale is completed by the end of the kinematic growth
regime of the large-scale field, and does not depend on magnetic Reynolds number RM for large RM . The
three and two-scale theories evolve almost identically at late times, both consistent with the late time doubly
humped “camel” magnetic spectra seen in simulations.



Next I will discuss how type 2 and type 3 dynamos can act together in a two-stage helical dynamo
framework for growing the large-scale magnetic fields of coronal cycles, coronal holes, and astrophysical jets
[8]. Jet and coronal hole fields are of large scale with respect to that of their anchoring rotators and in
both stars and disks, and these fields are unlikely to result from simple flux accretion from the material that
formed the rotator: In the sun, the solar cycle reversals prove that the field must be regenerated in situ. In
disks ,the field can diffuse faster than it is accreted in the absence of in situ generation.

The two stage, large-scale field formation paradigm is this: First, a type 2 velocity driven helical dynamo
amplifies fields of large enough scale that they buoyantly rise and supply magnetic helicity to the to the
corona [9, 10] without being shredding by turbulent diffusion. Once in the corona, continued footpoint
motions can further twist the field and inject more magnetic helicity. The loops respond by rising or
opening to larger scales. Coronal mass ejection (CME) type events can be associated with this evolution
if instability occurs. Such field evolution in the corona is in fact a type 3 dynamo. Disks and stars act as
helicity injecting boundaries to their magnetically dominated corona, a circumstance directly analogous to
Spheromak formation in the laboratory. In short, global fields of stars and disk involve a type 2 dynamo
inside the rotator, which injects magnetic helicity into a type 3 dynamo in the corona. Note that we observe
the exterior field, not the interior field for all astrophysical rotators except our Galaxy.

Finally, I will briefly mention some work on interface dynamos in supernovae [11]. For protosupernovae
unlike the sun, the backreaction on the differential rotation is important in limiting the lifetime of the
dynamo. These supernovae interface dynamos are explosive, not steady, and highlight processes that might
account for the observed bipolar outflow asymmetry in explosive end states of stars.

———————————
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Critical issues to get right about stellar dynamos
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Small scale versus large scale dynamos. A good definition of large scale and small scale dynamos is not
available. For now, let us say that small scale dynamos have no mean flow (U = 0) and produce no mean
field (B = 0). Here we reserve ourselves some freedom in the definition of meaningful averages (ensemble,
time, or spatial averages over one or two coordinate directions, depending on the nature of the problem).
Large scale dynamos produce a mean field (B 6= 0), but may or may not have a mean flow (αΩ and W × J

versus α2 dynamos, for example). By this definition, dynamos in Taylor-Green flows [1] do have a finite
time-averaged flow and would not be small scale dynamos.

Large scale dynamos. All known large scale dynamos (αΩ, W × J, and α2 dynamos) produce magnetic
helicity, which reacts back on the dynamo. As a consequence, the mean field saturates at a low value,

B
2
� B2

eq ≡ 〈µ0ρu
2〉. It is demonstrated (Fig. 1) that, by allowing for magnetic helicity fluxes out of the

domain, the large scale field is able to saturate at equipartition field strength.

Figure 1: Evolution of the energies of the total

field 〈B2〉 and of the mean field 〈B
2
〉, in units of

B2
eq, for runs with non-helical forcing and open or

closed boundaries; see the solid and dotted lines, re-
spectively. The inset shows a comparison of the

ratio 〈B
2
〉/〈B2〉 for nonhelical (α = 0) and heli-

cal (α > 0) runs. For the nonhelical case the run
with closed boundaries is also shown (dotted line near

〈B
2
〉/〈B2〉 ≈ 0.07). Adapted from Ref. [2].

Figure 2: Evolution of the field strength obtained
by solving the mean field equations with vertical ad-
vection (solid line, CU = 0.3) and without it (dashed
line, CU = 0). Here, CU = |U|max/(ηtk1) is a nondi-
mensional measure of the strength of advection out of
the dynamo domain. The dotted curve, obtained for
CU � 1, shows that even weak advection can affect the
long-term evolution of magnetic field. The inset shows
similar results for CU = 0.1 (solid), 1.5 (dashed), 2
(dotted) and 3 (dash-dotted). Adapted from Ref. [3].

The results of simulations are qualitatively, and in some cases also quantitatively, well reproduced by
mean field models where the effect of magnetic helicity fluxes enters into the dynamical feedback formula
for the magnetic alpha effect (even when there is no kinetic alpha effect!).

Magnetic helicity fluxes that are known to work include the shear-driven Vishniac-Cho flux [4, 5, 6],
which can be written in the form F ∝ (SB) × B and an advectively driven flux [3] of the form F ∝ αMU,



where αM is the magnetic α effect. The former is the one operating predominantly in the simulations in
Fig. 1, while the latter one operates in the mean field model shown in Fig. 2.

Small scale dynamos. An explanation is in order as to why simulations of dynamo action in spherical
shells may not yet have shown strong large scale dynamos. The simulations of Brun et al. [7] show dynamo
action at unit magnetic Prandtl number (PrM = 1). As the value of PrM is decreased, one must increase the
fluid Reynolds number Re at least by the same amount to maintain the same magnetic Reynolds number Rm,
but this is already prohibitively expensive. Solar-like simulations at PrM < 1 have not yet been considered,
but it is conceivable that the critical magnetic Reynolds number, Rm,crit, increases with decreasing PrM ,
as is found for typical small scale dynamos with zero mean flow [8]. Thus, the tentative suggestion is that
the simulations of Brun et al. show dynamo action that belongs to the class of small scale dynamos (even
though they do have a mean flow). This type of dynamo action would go away for smaller value of PrM ,
provided they value of Rm is still not very large. At the same time, the large scale dynamo effect may still
be sub-critical, i.e. shear and the effective α, or some other large scale effect, are still too weak, and the
effective turbulent diffusivity is still too large.

Implications for LES. The indications are that, at low values of PrM , when the values of Rm are still
small enough to allow a direct simulation of the induction equation, LES (including less advanced “tricks”
such as Smagorinsky and hyper viscosity) for the momentum equation, produce accurate results [8] for the
onset of dynamo action. However, similar approaches for the magnetic field are difficult and often not
successful [9, 10]. Successful LESs for MHD would need to incorporate magnetic helicity fluxes (for large
scale dynamos) and must somehow incorporate the fast growth at the Kazantsev (resistive) scale (for small
scale dynamos).

———————————
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MHD turbulence in a rotating spherical Couette flow
of sodium with an imposed dipolar magnetic field

T. Alboussière, D. Brito, P. Cardin, N. Gagnière, D. Jault, H-C. Nataf and D. Schmitt
LGIT, CNRS, Observatoire de Grenoble, Université Joseph–Fourier
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Most planets of the solar system have or have had a self-sustained internal magnetic field. Fluid motions
in planetary liquid cores are presumably governed by a balance between rotation and magnetic forces, a
regime called magnetostrophic. We have designed an experiment DTS (Derviche Tourneur Sodium) in order
to study such a magnetostrophic regime [1].

The experimental set-up is sketched in figure 1: forty litres of liquid sodium fill a spherical shell between
a 7.4cm-radius copper inner sphere and a 21-cm radius outer shell made of stainless steel. Both spheres
sketched in figure 2 can rotate independently around a vertical axis at different angular frequencies between
-30 and 30 Hz. The inner sphere encloses a permanent magnet providing a dipolar field with a moment of
700 Am2 (B=0.175 T at the equator of the inner sphere and B=0.008 T at the equator of the outer sphere).
The magnetic Reynolds number ranges from 1 to 35.

We have set-up several types of physical measurements in order to characterize the magnetohydrodynam-
ical fluid flow : (i) the velocity and torques delivered by both motors are recorded during the experiments,
(ii) the radial and azimuthal components of the sodium velocity are measured by ultrasonic Doppler ve-
locimetry ([2]), (iii) differences in electrical potential are measured at the surface of the external sphere, (iv)
the induced magnetic field is measured outside the external sphere (vi) the dynamical pressure is measured
at the outer boundary of the fluid flow.

The measurements reveal that the amplitude of the axisymmetric component of the fluid velocity can
exceed that of either spheres ([3]). This super-rotation is expected theoretically and in agreement with
previous linear numerical modeling ([4], [5]), but we show that non-linear effects modify its characteris-
tics. Both axisymmetric (including realistic boundary conditions and non linear axisymmetric terms) and
non-axisymmetric (three-dimensional) numerical simulations of the DTS flow will be compared with the ex-
perimental results. Experiments also demonstrate that several solutions for the fluid flow are obtained for a
given forcing (fixed inner sphere rotation rate and fixed outer sphere rotation rate); furthermore, spontaneous
bifurcations between these different states are also observed during a single run for a given forcing..

We have started the investigation of the instabilities and turbulence that develop in the DTS experiment.
Different regions of the experiment are in different dynamical regime: near the inner sphere, magnetic forces
dominate, while inertial forces play a strong role near the outer sphere. When the outer sphere is rotating,
the Coriolis force inhibits vertical motions and favors azimuthal velocities. We explore the characteristics
of waves and turbulence in these different regions. Analysis in time of the differences in electrical potential
and induced magnetic field are in particular used to detect the propagation of waves in the DTS flow.

We will discuss the implications of these new measurements for MHD turbulence and dynamo action.



Figure 1: Sketch of the DTS experiment.

Figure 2: Inner and outer spheres of the DTS exper-
iment. Permanent magnets are enclosed in the inner
sphere of copper producing a dipolar magnetic field.
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We study numerically an extensive set of dynamo models in rotating spherical shells with the geometry of
Earth’s core, covering a wide range of control parameters. The Ekman numner E varies between 10−6 and
3 × 10−4, the magnetic Prandtl number Pm between 0.06 and 10, the Prandtl number Pr between 0.1 and
10, and the Rayleigh number Ra is up to 50 times critical. Convection is driven by a fixed temperature
contrast between rigid boundaries. There are two distinct classes of solutions with strong and weak dipole
contributions to the magnetic field, respectively. The transition from dipolar to non-dipolar dynamos is
found when the scale-dependent Rossby number, Ro` = U/(Ω`), exceeds a value of ≈ 0.12 independent of
the values of E, Pr and Pm (U is the rms-velocity, Ω rotation rate, and ` a characteristic length scale of
the flow). Since Ro` measures the importance of inertial forces to the Coriolis force, dipolar dynamos break
down when inertia starts to play a significant role in the force balance.

We find that in the dipolar regime the minimum magnetic Reynolds number Rm for self-sustained
dynamos is independent of the magnetic Prandtl number Pm in the range 40 - 50. However, dynamos at
low Pm exist only at sufficiently low Ekman number E. The lowest magnetic Prandtl number at which we
find a self-sustained dipolar dynamo varies as Pm ∼ E3/4. At low Pm the hydrodynamic Reynolds number
must be large to exceed the critical value of Rm. The associated inertial effects have an adverse influence
on the dynamo and a low Ekman number is required to balance them by strong rotational forces.

For dynamos in the dipolar regime we attempt to establish scaling laws that fit our numerical results.
Assuming that diffusive effects do not play a primary role, we introduce non-dimensional parameters that
are independent of any diffusivity. As the primary control parameter, we define a modified Rayleigh number
based on the advected heat (or buoyancy) flux Q, Ra∗

Q ∼ Q/(Ω3D4), where D is the shell thickness.
Ra∗

Q is equivalent to the non-dimensional power generated by buoyancy forces. Characteristic properties of
the solution are described by the Rossby number Ro = U/(ΩD) for the flow velocity, the Lorentz number
Lo = B/([µρ]1/2ΩD) for the magnetic field strength B, and a modified Nusselt number Nu∗ ∼ Q/(Ω∆TD3)
for the heat transport efficiency. To first approximation, all our dynamo results can be collapsed into simple
power-law dependencies on the modified Rayleigh number, with approximate exponents of 2/5, 1/2 and 1/3
for the Rossby number, modified Nusselt number and Lorentz number, respectively. Residual dependencies
on the parameters related to diffusion are weak. The Ekman number and hydrodynamic Prandtl number
seem to have no effect, but an influence on the magnetic Prandtl number, with a power law exponent of
order 1/10, may exist. A similar weak dependency on Pm has been found before in a scaling law for the
ohmic dissipation time in numerical dynamo models, but has been rejected because it did not agree well
with the ohmic dissipation observed in the Karlsruhe dynamo experiment, where Pm is much smaller than
in the models.

The Elsasser number Λ, which is the conventional measure for the ratio of Lorentz force to Coriolis force,
is found to vary widely. Our scaling laws are in agreement with the assumption that the magnetic field
strength is controlled by the available power and not necessarily by a force balance. In fact, the scaling law
for the Lorentz number requires for a good fit the introduction of a correction factor which accounts for
the fraction of energy dissipated by viscous rather than by ohmic dissipation. We try to assess the relative



importance of the various forces by studying sources and sinks of enstrophy (vorticity squared). In general
Coriolis and buoyancy forces are of the same order, inertia and viscous forces make smaller and variable
contributions, and the Lorentz force is highly variable. We can give only a partial theoretical basis for our
scaling law. The missing piece is an explanation for the empirical 2/5-exponent in the law for the Rossby
number.

We use our scaling law for the Rossby number to deduce the Rayleigh number of the Earth’s core. Using
core flow velocity estimates obtained from geomagnetic secular variation, we obtain Ra∗

Q to be about 3×10−13

and an associated buoyancy flux of 3× 104 kg/sec. When we assume that this represents predominantly the
compositional flux of light element which is rejected when the inner core solidifies, we predict a small growth
rate of the inner core of order 0.1 mm/yr and an inner core age of the order 3.5 Gyr.

When we take a power law exponent of 1/3 in the scaling law for the Lorentz number and ignore the
possible weak dependence on Pm, a surprising implication is the independence of magnetic field strength
B on both the conductivity and the rotation rate. B is basically controlled by the buoyancy flux. For
our estimate of the buoyancy flux we obtain a magnetic field strength of order 1 mT inside the core. This
is slightly low compared to previous estimates, but is still reasonable and in agreement with a core field
estimate from the possible observation of torsional oscillations.

Applying our scaling laws to other planetary dynamos, we find that the observed excess luminosity of
Jupiter implies an internal field of 8 mT, in agreement with Jupiter’s external field being ten times stronger
than that of the Earth. For Saturn the predicted magnetic field seems too strong and Mercury’s very weak
field cannot be explained by a very low buoyancy flux in the core, because this would correspond to a
subcritical magnetic Reynolds number. Possibly Earth and Jupiter fall into the same class of dynamos as
are realized in our simulations, whereas different conditions (differential rotation, strongly different inner
core size) lead to different dynamos in the other two planets.

Challenges for the future are (1) to establish a more complete theoretical basis for the scaling laws, (2)
further explore there range of validity, and (3) to clarify the role of the magnetic Prandtl number. For the
latter two points the comparison with future laboratory dynamo experiments will be very helpful.
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The most successful mean-field solar dynamo model is the so-called flux-transport dynamo, which operates
with solar-like differential rotation, meridional circulation and α-effect. The Figure below (adopted from [5])
describes how this class of dynamo model works to produce a solar cycle.

Figure 1: Schematic of solar flux-transport dynamo processes. Red inner sphere represents the Sun’s
radiative core and blue mesh the solar surface. In between is the solar convection zone where dynamo
resides. (a) Shearing of poloidal field by the Sun’s differential rotation near convection zone bottom. The
Sun rotates faster at the equator than the pole. (b) Toroidal field produced due to this shearing by differential
rotation. (c) When toroidal field is strong enough, buoyant loops rise to the surface, twisting as they rise
due to rotational influence. Sunspots (two black dots) are formed from these loops. (d,e,f) Additional flux
emerges (d,e) and spreads (f) in latitude and longitude from decaying spots (as described in figure 5 of [1]).
(g) Meridional flow (yellow circulation with arrows) carries surface magnetic flux poleward, causing polar
fields to reverse. (h) Some of this flux is then transported downward to the bottom and towards the equator.
These poloidal fields have sign opposite to those at the beginning of the sequence, in frame (a). (i) This
reversed poloidal flux is then sheared again near the bottom by the differential rotation to produce the new
toroidal field opposite in sign to that shown in (b).



In applying flux-transport dynamos to the Sun, we constrain the flow fields by helioseismic measurements.
We constrain the least-known ingredient, the diffusivity, by calibrating the model-output with observed
magnetic features. We discuss in this talk recent applications of flux-transport dynamos that yield the
following major results: (i) a pure interface dynamo without meridional circulation does not work for the
Sun; (ii) a cyclic dynamo could be the origin of strong fields in the Sun’s radiative core; (iii) large-scale mean
solar cycle features can be predicted.

(i) We [2] show that a pure interface type dynamo will not work for the Sun if the skin effect for
poloidal fields does not allow them to penetrate the tachocline. In the absence of tachocline radial shear
participating in the dynamo process, a latitudinal differential rotation can provide the necessary Ω-effect
to drive an oscillation in an interface dynamo, but it alone cannot produce the latitudinal migration and
therefore a reasonable butterfly diagram for the Sun. We show that to make an interface dynamo work with
the constraints of interior structure and skin depth, a meridional circulation is essential.

(ii) Any large-scale magnetic fields present in solar/stellar radiative interiors have so far been thought
to be primordial or residuals from extinct dynamos. We [3] show that a regular cyclic dynamo can also
be the origin of strong magnetic fields in the solar radiative tachocline and interior below. We show that,
for a low enough core-diffusivity (≤ 107 cm2 s−1), there exists an oscillatory magnetic field as well as a
steady (nonreversing) field of amplitude ∼ 1 kG − 3 × 103 kG or more. The Lorentz force feedback may
limit oscillatory dynamo fields to ∼ 30 kG, for which the mean non-reversing toroidal fields is still ∼300
kG, for the lowest core diffusivity value. The presence of strong oscillatory and steady toroidal fields in
the radiative tachocline implies that there cannot be a slow tachocline; the dynamics should always be fast
there, dominated by MHD.

(iii) We [4, 5] construct a dynamo-based tool for predictions of mean solar cycle features by replacing the
theoretical Babcock-Leighton type poloidal source with the observed surface magnetic source from decay of
active regions. We run the model by assimilating the surface magnetic data since cycle 12, and show that the
model can correctly simulate the relative peaks of cycles 16 through 23. The simulations use the first 4 cycles
to load the meridional circulation conveyor belt to create the Sun’s memory about its past magnetic fields.
Extending the simulation into the future we predict that cycle 24 will be 30-50% stronger than current cycle
23. We show that the key to success of our prediction model lies in the formation of a ‘seed’ for producing
cycle n from the combination of latitudinal fields at high latitudes from past three cycles, n-1, n-2 and n-3,
instead of just previous cycle’s polar fields, as used in so-called “precursor” prediction methods.

Finally we close by mentioning a few open problems for future research in this field: (i) simulating features
in north and south hemispheres separately to look for additional forecast skill, as well as the influence of
magnetic links between the two hemispheres, (ii) extenion of simulations of relative cycle peaks back to the
earliest usable records, starting with cycle 1 around 1750, (iii) additional tuning of the model to improve
the skill at predicting two sunspot cycles ahead. Two particularly important generalizations that need to be
done are: to include departures from axisymmetry, since many solar cycle features are longitude-dependent,
and to include jxB force type feedbacks on the differential rotation and meridional circulation.
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Magnetic turbulence in the Riga Dynamo experiment
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1Institute of Physics University of Latvia, LV-2169 Salaspils, Latvia
2Forschungszentrum Rossendorf, PO Box 510119, 01314, Dresden, Germany

Figure 1: Experiment setup

Riga dynamo experiment demonstrates that enough strong and appropriately directed flow of fluid elec-
troconductor generates magnetic field very likely as Earth and other celestial bodies do. Two 100 kW motors
(Fig. 1) are driving propeller which forces molten sodium to circulate inside an annular vessel, part of which
is located in the basement of sodium lab. The sodium flow is directed by two thin coaxial electro-conducting
cylindrical partition walls. In the central channel sodium is swirling down from the propeller. In the coaxial
counter-flow channel the flow is raising straight up to the propeller. In an outer part of the vessel the sodium
is move-less, it serves for electrical connection. Depending on sodium temperature at a propeller speed of

Figure 2: Field record

1800 – 2000 rpm (flow-rate about 0.6 qm/s) the zero state for magnetic field is becoming unstable and field
appears seeming from nothing (Fig.2, ). Magnetic field values are recovered from coil voltage records by
means of Fast Fourier processing.

For finer spectral resolution two small coils were inserted alternately in a narrow channel tip penetrating
deep inside the central flow. Examples for recorded signals and Fourier processed fields are on Fig.3 while
power spectra on Fig.4 .



Figure 3: Examples of recorded signals and Fourier processed field

Figure 4: Magnetic spectra
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Experimental and numerical studies of the role of turbulence on

current generation and magnetic field self-excitation in the
Madison Dynamo Experiment

Cary Forest,1, Adam Bayliss,1, Mark Nornberg1 and Erik Spence1

1University of Wisconsin, Madison, Wisconsin, 53711 USA

The Madison Dynamo experiment is investigating the role of turbulence on current generation and self-
excitation of magnetic fields. The geometry, a 1 meter diameter spherical vessel with a flow driven by two
counter rotating internal impellers, is motivated to a large degree by the two vortex flow proposed by Dudley
and James. The geometry is shown in Fig. 1. In this talk will report on an effort to compare the results from
the experiment with simulations of a similar geometry using a 3D numerical solution of the MHD equations.

Figure 1: Photograph and schematic of the Madison Dynamo Experiment. The sphere is 1meter in diameter.
It is filled with 105–110◦C liquid sodium and a flow is created by two counter-rotating impellers. Two sets
of coils, one coaxial with and one transverse to the drive shafts, are used to apply various magnetic field
configurations. The magnetic field induced by the flow is measured using Hall-effect sensors both on the
surface of the sphere and within tubes that extend into the flow.

The numerical model is a pseudo-spectral code using spherical harmonic basis functions in the azimuthal
and polar directions and finite difference in the radial direction. An Adams-Bashforth predictor corrector
technique for the advancement of the non-linear terms. A simple impeller model has been developed which
drives a flow quantitatively similar to that observed in water experiments (in a geometry f dimensionally
identical to the sodium experiment). These flows can be dynamos, depending upon the value of the magnetic
Reynolds number Rm = µ0σV a and the fluid Reynolds number Re = V a/ν of the flow. For Re < 420 the
flow is laminar and the dynamo transition is governed by a simple threshold in Rm > 100, above which a
growing magnetic eigenmode is observed that is primarily of a dipole field tranverse to axis of symmetry of
the flow. In saturation the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally
stable. For Re > 420 and Rm ∼ 100 the flow becomes turbulent and the dynamo eigenmode is suppressed.
The mechanism of suppression is due to a combination of a time varying large-scale field and the presence



of fluctuation driven currents (such as those predicted by the mean-field theory) which effectively enhance
the magnetic diffusivity. For higher Rm a dynamo reappears, however the structure of the magnetic field is
often different from the laminar dynamo; it is dominated by a dipolar magnetic field aligned with the axis
of symmetry of the mean-flow which is apparently generated by fluctuation-driven currents.

In the experiment, a fully self-sustained dynamo has not yet been observed, although there is evidence for
an intermittently excited magnetic field which has structure similar. There may be evidence for intermittent
self-excitaion in the simulations, but the limited duration of the runs makes it difficult to determine this for
certain.

The experiments have been focused on understanding the magnetic fields generated by the turbulent flows
when a weak seed field is applied which shares a symmetry axis with the mean flow. Clear evidence for the
presence of fluctuation driven currents is present. The EMF generated by the mean-flow and mean-magnetic
field lead to currents which are unable to account for the detailed structure of the mean-magnetic field. In
the experiment, there is a dipole observed in the experiment which cannot be explained by the axisymmetric
mean flows, and the magnitude of the predicted fields are much larger than those observed. Similar behavior
is also seen in numerical simulations of turbulent flows (subcritical for dynamo excitation) with externally
applied magnetic fields.

Finally, the spectrum of the velocity field and magnetic field fluctuations are discussed. In the experiment,
clear evidence for an inertial range and a dissipation scale are observed on single point measurements of the
magnetic field using a hall probe and of the velocity field using LDV in the water experiment. The dissipation
scale for the magnetic field moves to higher frequencies as Rm is increased. Simulations at Re∼1000 predict
qualitatively similar behavior.
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Rapidly Rotating Convection and the Geodynamo
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Rapidly rotating convection in spherical geometry has been explored using the quasi-geostrophic approxi-
mation [1]. This is a reasonable model of convection between rotating spherical shells outside the tangent
cylinder that touches the inner core. This approximation assumes a simple z-dependence and solves the
two-dimensional nonlinear fluid equations in s, the distance from the axis, φ the azimuthal coordinate, and
time t. Attention is focussed on the heat transport and the azimuthal zonal flow. We find that the local
Peclet number, the product of the typical convective velocity and local convective length scale divided by
the thermal diffusivity, is helpful for understanding the dynamics of rapidly rotating convection.

For small R/Rc − 1, R being the Rayleigh number and Rc its linear critical value, the Nusselt number
varies linearly with R/Rc − 1, with a slope that diminishes rapidly as the Prandtl number P = ν/κ → 0. At
larger values of R/Rc − 1 the Nusselt number becomes less dependent on P , and eventually increases more
slowly with R/Rc − 1 as thin thermal boundary layers develop. At small R/Rc − 1, the zonal flow U0

φ ∼ Û2
c ,

where Ûc is the convective velocity, but as R/Rc−1 increases saturation occurs and the exponent is reduced

to U0
φ ∼ Û

4/3
c approximately. Some possible reasons for this exponent will be discussed. The zonal flow

sometimes exhibits a multiple jet structure, and sometimes has a simple radial structure. Factors affecting
multiple jet formation will be considered.

We compare our results with the inertial scaling, [2, 3], developed to study rapidly rotating convection,

which predicts that Ûc ∼ RQ
2/5(EP )1/5, where RQ is the flux Rayleigh number, RQ = R(Nu − 1), and

E is the Ekman number, ν/Ωd2, d being the gap between the inner and outer core. The scalings for RQ

and E are in reasonable agreement with our numerical solutions, but the Prandtl number scaling is poor.
It appears that the viscous length scale at onset, dE1/3, is still relevant even at Rayleigh numbers 50 times
critical.

When a dynamo generated magnetic field is present, Christensen and Aubert [4] find that the scaling

Ûc ∼ RQ
2/5 still holds (the Rayeigh number here being defined in terms of the rotation time rather than the

dissipation time), while Starchenko and Jones [5] argued that Ûc ∼ RQ
1/2. In the Earth’s core, velocities are

so low that inertia is negligible except on very small length scales. The conditions that inertia is negligible
in spherical dynamo models have been investigated recently by Sreenivasan and Jones [6].

The vorticity equation can be written

−2(Ω · ∇)u = ∇× gαT r̂ +
1

ρ
∇× (j× B), (1)

suggesting 2ΩÛc/Lz ∼ gαT/Lx. The temperature perturbation T can be eliminated using the convective
heat flux per square metre F ∼ ρcpÛcT , to give

Ûc ∼

(

gαF

ρcpΩ

)1/2
Lz

2Lx

, (2)

or Ûc ∼ RQ
1/2 if the ratio Lz/Lx is constant. It is therefore the asymptotic behaviour of Lz/Lx which is

crucial. In the presence of a magnetic field, the zonal flow is much reduced, and more interest attaches to
the strength of the generated magnetic field. Ohmic dissipation balances the buoyancy work, since viscous
dissipation is small, so

ηµj2 ∼
gαF

cp

. (3)



The length scale δB over which the magnetic field varies comes from the induction equation

(B · ∇)u ∼ η∇2B → δB ∼ Rm−1/2d (4)

if flux ropes with thickness δB are created, [7]. Then setting |µj| ∼ |B|/δB and using (3),

B ∼ µ1/2d1/2

(

gαF

cp

)1/2
1

Û
1/2
c

. (5)

The scaling for Ûc, (2), can then be used to estimate the typical field strength. This field strength scaling
implies that the Lorentz force is primarily balanced by pressure in the flux ropes where it is created. To
obtain the magnetic field strength directly from the vorticity equation (1) we must note that in the magnetic
flux tube configuration the current varies only slowly along the (long) flux tube.

These scalings can be applied to obtain estimates of the typical velocity and magnetic field strength of
the planets. For a planet to actually have an active dynamo obeying these scalings, the total heat flux must
exceed the heat flux that can be conducted down the adiabat at least somewhere in the core. Also, the
magnetic Reynolds number predicted by (2) must be sufficient for dynamo action to occur.

———————————
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Building laboratory models of planetary cores

Daniel P. Lathrop
Department of Physics, University of Maryland, College Park, MD

We probe aspects of the dynamics of fluid flows in planetary cores using experiments in liquid sodium, liquid
helium, liquid nitrogen or water (not of course mixed together!). Key to these several experimental devices
is exploring how turbulence is effected by rotation, magnetic fields or both. As both add some measure of
elasticity to the flows, several types of oscillatory behavior are observed depending on the force balances
involved. Ordering the Coriolis, Lorentz, and Inertial forces is key to understanding the complicated states
observed. While these experiments are undertaken in part to understand the geodynamo, they have led to
a number of different first observations, including the magnetorotational instability, and inertial waves in
both spherical Couette flow and decaying turbulence in cryogenic flows. These different approaches to using
laboratory experiments are opening up a new direction to understanding the dynamics of the Earth’s outer
core and other Planetary interiors.
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Recent theoretical and numerical results on intermittency in hydrodynamic turbulence and scalar trans-
port are described, with special emphasis on the Lagrangian evolution. First, we derive the advected delta-vee
system. This simple dynamical system deals with the Lagrangian evolution of two-point velocity and scalar
increments in turbulence [1, 2]. It shows that ubiquitous trends of three-dimensional turbulence such as
exponential or stretched exponential tails in the probability density functions of transverse velocity incre-
ments, as well as negatively skewed longitudinal velocity increments, emerge quite rapidly and naturally
from initially Gaussian ensembles. Further extensions of the system are shown to provide simple expla-
nations for other known intermittency trends in turbulence: (i) that transverse velocity increments tend
to be more intermittent than longitudinal ones, (ii) that in two dimensions, vorticity increments are inter-
mittent while velocity increments are not, (iii) that scalar increments typically become more intermittent
than velocity increments and, finally, (iv) that velocity increments in four-dimensional turbulence are more
intermittent than in three dimensions. While the origin of these important trends can thus be elucidated
qualitatively, predicting quantitatively the statistically steady-state levels and dependence on scale remains
an open problem that would require including the neglected effects of pressure, inter-scale interactions and
viscosity.

Next, we describe recent efforts to incorporate a new model for the anisotropic part of the pressure
Hessian into the Lagrangian dynamics. A stochastic model for the full velocity gradient tensor is proposed,
based on a closure in which spatial gradients of pressure and the viscous Laplacian term are expressed in
terms of the material deformation tensor (this is also related to the tetrad model of Ref. [4]). Here the
deformation tensor is modeled based on the assumption that the velocity gradient tensor’s autocorrelation
along its Lagrangian history is strong over a Kolmogorov time-scale, and is uncorrelated for longer times[3].
The model reproduces important geometric trends such as vorticity-strain rate alignments, joint PDFs in
the so-called “R-Q” plane, as well as nearly lognormal statistics for the dissipation rate.

Finally, we describe the implications of these findings on the problem of generating synthetic 3D vector
fields that mimic non-Gaussian turbulence statistics, and that may be used as initial or inlet boundary
conditions for simulations. Inspired by the advected delta-vee system, a simple method is proposed based
on the minimal Lagrangian map, by which an initial Gaussian field generated using random-phase Fourier
modes is deformed[5]. The deformation is achieved by moving fluid particles of a sequence of low-pass
filtered fields at their fixed velocity for some scale-dependent time-interval, interpolating onto a regular grid,
and imposing the divergence-free condition. Statistical analysis shows that the resultant non-Gaussian field
displays many properties commonly observed in turbulence, ranging from skewed and intermittent velocity
gradient and increment probability distributions, preferential alignment of vorticity with intermediate strain-
rate, and non-trivial vortex stretching statistics. Differences begin to appear only when interrogating the
data with measures associated with intense vortex tubes that are conspicuously absent in the synthetic
field. To explore the dynamical implications of these observations, the synthetic non-Gaussian fields are
used as initial conditions in DNS and LES of decaying isotropic turbulence, and results are compared with
initializations using Gaussian fields. The non-Gaussian synthetic fields yield more realistic results with



significantly shortened initial adjustment periods.
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Magnetic dynamo calculations inside a sphere
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This presentation describes some recent computational efforts to demonstrate magnetic dynamo action inside
a sphere that is filled with an incompressible electrically conducting fluid, avoiding rectangular periodic
boundary conditions. The motivation is ultimately directed toward planetary and laboratory dynamos, but
our first concern is to identify and understand the physical processes involved at the simplest level consistent
with the magnetohydrodynamic (MHD) equations. The idea is to compute the simplest dynamo situations
first, and put in the imaginable complications (thermal convection, irregularities on the inner surface of the
Earth’s mantle, variable fluid mass density, a differentially rotating inner core, for examples) one at a time.
We are not putting a high priority on realistic numbers at this point.

The system studied is a sphere with a weightless, rigid, perfectly conducting shell at a radius r = R.
The shell is assumed to be coated on the inside with a very thin layer of insulating dielectric, so that the
normal components of the magnetic field and current density vanish there. The normal components of the
velocity field and vorticity are also assumed to vanish at r = R. These conditions are implied by, but do not
imply, no-slip boundary conditions on the velocity field. In addition to being difficult to implement, there
are conceptual difficulties associated with no-slip boundary conditions that remain unresolved (e.g., [1] and
[2]) and controversial, and are better engaged with in simpler situations than this one.

Inside the sphere, r < R, the equations of viscous, resistive, incompressible MHD are assumed to govern
the dynamics. We have chosen the sphere to be either stationary or rotating with a constant angular velocity
in the latter case by introducing Coriolis and centrifugal terms into the equation of motion. In the induction
equation for the magnetic field, no corrections for the fact that the coordinate frame may be rotating and
non-inertial are deemed necessary, since the rotation velocity is very small compared to the speed of light.

The method of solution is wholly spectral; all of the solenoidal fields are expanded as series of Chandrasekhar-
Kendall (C-K) orthonormal eigenfunctions of the curl. A similar program was used some years ago in cylin-
drical geometry [3] for nonlinear MHD computations. The C-K functions are believed to be complete for
solenoidal fields, but a proof has been given only for the cylindrical case [4]. The boundary conditions are all
built into the expansion functions themselves, and do not require attention again in the computation. The
dynamical variables are the time-dependent complex coefficients in the expansions, which are advanced by a
set of nonlinear ordinary differential equations. The known quadratic ideal invariants are very well conserved
over many eddy-turnover times, for the initial-value problem with zero viscosity and resistivity. We return
to configuration space only for graphical purposes. The price paid for this scheme is the absence of fast
transforms that make pseudospectral computation in periodic boundary conditions economical, so that the
convolution sums become unwieldy at resolutions achievable by FFT-based codes. The advantages are that
the boundary conditions are automatically satisfied and the expansion functions are physically natural to
the geometry: far fewer of them are necessary to represent the MHD structures that arise than would be
necessary, for example, in a rectangular Fourier series representation.

Mechanical forcing is introduced as an inhomogeneous term on the right hand side of the equation of
motion. The forcing, too, is represented in terms of C-K functions and can be chosen to mimic such processes
as thermal convection or irregular boundaries on the inner surface.

The code can be run, of course, as a purely hydrodynamic code by deleting the magnetic terms. Doing
so reveals, for the rotating case, flow patterns characteristic of Ekman pumping and internal wave motion in



which the inertial terms in the equation of motion are not neglected and no geostrophic approximations are
made. Wide variations in behavior are observed depending upon Rossby number, Reynolds number, Ekman
number, and the scale of the forcing terms. Fully exploring the possible parameter space will be a lengthy
task. Each corner of parameter space shows its own peculiarities.

Dynamo actions with and without rotation are very different. In both cases, the technique is to force a
mechanical flow pattern which may be time dependent but which has ceased to evolve systematically and
may or may not be turbulent. Then a small seed magnetic field is introduced and allowed to evolve according
to the full set of MHD equations. At the early stages, the magnetic energy is observed either to amplify or
decay, and at this stage we may be considered to be solving the kinematic dynamo problem. For the case of
amplifying magnetic fields, they may be followed on into the saturation regime, where the Lorentz force is no
longer negligible in the equation of motion. Both laminar and disordered magnetic fields can be observed in
different parameter regimes, and magnetic dipole moments may be computed. For the former, flips from one
dipolar orientation to another are observed in some cases. For the latter, essentially stochastically varying
small-scale magnetic fields are possible. Some details appear in Ref. [5].

Future plans involve the inclusion of a differentially rotating inner solid core, and the replacement of
the conducting shell by a mechanically impenetrable insulator, so that the generated magnetic field can
penetrate the vacuum region outside.

The computations reported here have all been carried out by Dr. Pablo Mininni. The author also wishes
to thank Dr. Annick Pouquet for stimulating discussions. This work was supported in part by National
Science Foundation Grants ATM-0327533 at Dartmouth and CMG-0327888 at NCAR.
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Abstract We report recent results from the VKS2 experiment: response to an externally imposed homoge-
neous magnetic field, and transport of a localized applied field.

The VKS2 experiment The VKS project in Cadarache [1] is one of several experiments dedicated to
the study of the dynamo effect in an unconstrained homogeneous flows of liquid metals [2]. The acronym
“VKS” stands for “von Kármán sodium” and refers to the flow generated between two counterrotating
impellers in a finite cylinder. The phenomenology of the time-averaged flow is as follows. Each impeller
acts as a centrifugal pump: the fluid rotates with the impeller and is expelled radially. To ensure mass
conservation the fluid is pumped in the center of the impeller and recirculates near the cylinder wall. In
the exact counter-rotating regime, the mean flow is divided into two toric cells separated by an azimuthal
shear layer. The kinetic Reynolds number is about 107 and the shear layer instability is a strong source
of turbulence. The VKS2 evolution result from flow optimization and numerical inspection of its dynamo
behavior [3]. With respect to the first version (VKS1[1]), the motor power has been increased to 300kW and
the volume of the conducting domain is twice greater. A temperature regulation allows long measurements
in stationary regime. Magnetic Reynolds number between 12 and 50 are reached.

Figure 1: VKS2 flow vessel and driving impellers Figure 2: Mean flow geometry

Response to a uniform applied field [4] We apply a large scale field with a pair of coils (B0y = 2.7G,
too weak to modify the flow) in a direction transverse to the axis of rotation of the driving impellers – the
direction expected for the dynamo neutral mode in the kinematic dynamo simulations [3]. Fig. 3 shows the
evolution of the mean of the induced field by in the direction of the applied field. Once Rm > 20, 〈by〉 exceeds
B0y. In addition, the fluctuations of the induced component by are non-Gaussian, – Fig. 4 – at all Rm values.
These features are in contrast with VKS1 measurements, where the induced field by saturated at 0.4B0y,
and its fluctuations were Gaussian. However, no self-sustained dynamo regime has been reached, and at
the largest Rm values we have measured a linear growth of the mean and rms values of the induced field.
Note, in Fig. 3, that the measured mean values of induction deviate significantly from the ones predicted by
induction from the mean flow velocity.



Figure 3: Evolution of the mean induced field by.
Solid line: numerical prediction from the mean flow.
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Figure 4: Corresponding probability density functions
of the fluctuations of by, comparison to a Gaussian

Response to a localized applied field [5] We have studied the response when a localized field ~B0(~r),
generated by a NdFeB cylindrical magnet, 22 mm in diameter and 10 mm in height, set within the flow
vessel. The maximum value of the field created by the magnet in its vicinity is about 500 G but decays to
less than 1 G, at a distance 100 mm away from the magnet. The time recordings of the fluctuations of the
three components of the induced magnetic field ~B measured by the probe 200 mm away from the magnet,
are displayed in Fig. 5 for Rm = 30. We observe an intermittent signal with the occurrence of bursts of
magnetic field. The corresponding probability density functions (PDF) are shown in Fig. 6.

These observations are of interest for the analysis of the transport of a magnetic field by turbulence.
Indeed, magnetic eigenmodes generated by dynamo mechanisms are usually strongly localized in space.
Geophysical or astrophysical flows generally involve regions of strong differential rotation or strong helicity
which are not located in the same part of the flow but are both believed to be necessary for dynamo action.
It is thus important to understand how the magnetic field induced in one region is transported to the other
by strongly turbulent flows.

Figure 5: Transport of a localized applied field: time
evolution, at Rm = 30.

Figure 6: Corresponding PDFs. Bx (circles) , By

(squares), Bz (ast).
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Linear regime of dynamo action at low magnetic Prandtl number:
Role of the mean flow and the velocity fluctuations.

Y.Ponty 1, P.D. Mininni 2, F. Plunian 3, J.-F. Pinton 4 , H. Politano 1 and A. Pouquet 2.
1 CNRS UMR6202, Laboratoire Cassiopée, Observatoire de la Côte d’Azur,
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First, we consider the induction of magnetic field in flows of electrically conducting fluid at low magnetic
Prandtl number and large kinetic Reynolds number. Using the separation between the magnetic and kinetic
diffusive length scales, we study the response of a forced flow to an externally applied field : topology of
the mean induction and time fluctuations at fixed locations. The results are in remarkable agreement with
existing experimental data; a global 1/f behavior at long times is also evidenced [1].

Secondly, we present a numerical approach to the dynamo problem at low magnetic Prandtl number for
different forcing [2, 3, 5]. The difficulty of resolving a large range of scales is circumvented by combining
direct numerical simulations, and sub-grid model. Our main findings are that dynamos are observed at
low magnetic Prandtl number, few order of magnitude smaller as previous numerical studies and the role
of the time average flow on the dynamo onset, compared with the fully turbulent dynamo regime [4]. The
competition between the average in time velocity kinematic dynamo modes (Figure 1) and the large scale
velocity fluctuation dynamo modes are also investigated.

References

[1] Y. Ponty, H. Politano & J-F Pinton “Simulation of Induction at Low Magnetic Prandtl Number” Phys.
Rev. Lett. 92, pp 144503 (2004).

[2] Y. Ponty , P. Minnini , A. Pouquet , H. Politano , D. Montgomery , J.-F. Pinton ”Numerical study of
dynamo action at low magnetic Prandtl numbers” Phys. Rev. Lett. 94 , 164502 (2005).

[3] P. D. Mininni, Y. Ponty, D. C. Montgomery, J-F Pinton, H. Politano, and A. Pouquet ”Dynamo Regimes
with a Non-helical Forcing” The Astrophysical Journal, 626: 853 -863 (2005)

[4] Y. Ponty, P.D. Minnini, J.-F. Pinton, H. Politano, A. Pouquet : “Dynamo action at low magnetic Prandtl
numbers: mean flow vs. fully turbulent motion”, submitted (2006).

[5] Y. Ponty & F. Plunian “Large scale Dynamo at low magnetic Prandtl number” in preparation.

[6] VAPOR/NCAR Software : http://:www.vapor.ucar.edu



Figure 1: Volume rendering of the magnetic energy and magnetic field lines from the average in time velocity
dynamo mode with a Taylor-Green forcing using VAPOR/NCAR software [6].



GTP Workshop on

Modeling MHD Turbulence; Applications to

Planetary and Stellar dynamos

at NCAR, 27-30 June, 2006, Boulder, CO, USA

Euler-Lagrangian means in

rotating, magnetohydrodynamic flows

Andrew Soward1 and Paul Roberts2

1Department of Mathematical Sciences, University of Exeter, Exeter, EX4 4QE, UK
2Department of Mathematics, University of California, Los Angeles, CA 90095, USA

1. Background

In large Reynolds number turbulence, motion occurs on a wide range of length scales varying from the large
size L of the of the system down to the very short length viscous length scale lν (� L). Only on that latter
length lν is viscous dissipation important. For buoyancy driven MHD systems the problem is complicated
by the fact that there are in addition other dissipation lengths such as the thermal and magnetic diffusion
length scales lκ and lη , which may be of very disparate values depending on the Prandtl numbers lν/lκ and
lν/lη. Since the length scale range between L and lmax ≡ max (lν , lκ, lη) is so large, it remains problematic,
how to deal with the short lengths l (� L), even when they remain large compared to the diffusion lengths
l � lmax This is exactly the range that has motivates our enquiry and to which we restrict attention.

In rotating MHD systems, it is well known that the Lagrangian (rather than the Eulerian) representation
can often be used very effectively, when l � lmax. The idea is most readily appreciated in the context of the
advection without diffusion of a passive scalar quantity such as temperature, for which its material derivative
vanishes. Then the temperature remains constant following fluid particles. Likewise in the case of magnetic
field in a perfectly conducting fluid, magnetic flux is conserved on material surfaces. Then the magnetic field
at a point moving with the fluid is readily derived in the Lagrangian framework simply by properties of the
coordinate transformation relating the current position of fluid particles to their original positions.

The properties mentioned are kinematic in nature and ultimately provide a useful description of the
advected quantities. To actually determine their temporal evolution, we need to take advantage of the
frozen field results when considering the equation of motion. The simplest application of the idea is through
the investigation of the stability of a static state. Since the pressure gradient in the equation of motion
does not transform nicely from a Lagrangian point of view, it is better to consider the equation of motion
in its Eulerian form. The Eulerian values of the perturbation values of frozen quantities like the magnetic
field, which appear in the equation of motion, are determined from their Lagrangian description in terms of
the small fluid particle displacement. In this way, equations like the temperature and magnetic induction
equations are bypassed leaving only equations for the fluid particle displacement. Even when the background
state is moving the essence of this procedure may still be used, albeit a hybrid Eulerian–Lagrangian approach
must be adopted instead, as explained in §2, and expressions for the perturbation velocity become more
complicated (see, e.g., Frieman and Rotenberg [1]). Though we have outlined the linear ideas in terms of
stability calculations, the idea is also useful in the description of wave motions.

Once the fluid particle displacements are no longer small, two distinctive situations need to be distin-
guished. On the one hand, the displacements may increase indefinitely, as is common in turbulence. For
such problems involving (say) the transport of a passive scalar, the Lagrangian procedure has been adopted
and used to obtain Eulerian values at quadratic order in the displacement. Then averaging may be used to
determine the evolution of the Eulerian mean quantity. On the other, when the particle path displacements
ξξξ (introduced in §2 below and employed in [1]) though finite remain of moderate size, as exemplified by wave
turbulence, then the hybrid Eulerian–Lagrangian approach of §2, which builds on the early work of Eckart
[2], provides a good way of addressing the evolution of the mean fields correct to O(|ξξξ|2). It was developed
by Soward [3] in the dynamo context and Andrews and McIntyre [4] in the atmospheric science context.



2. Methodology

We relate the actual position x∗ of a fluid element at time t∗ to a reference position x at time t by a mapping
x∗ = x∗(x, t), t∗ = t. It is simply a time dependent co-ordinate transformation which is complicated by the
the motion w∗(x, t) = ∂x∗/∂t. The underlying idea is to construct the governing equations relative to the
reference frame. To that end we transform our field variables such as the flow velocity v∗(x∗, t∗) to form, in
the language of the General Tensor Calculus, contravariant and covariant vectors v and V defined by

v∗i = vj∂x∗

i /∂xj = Vj∂xj/∂x∗

i together with w∗

i := ∂x∗

i /∂t = wj∂x∗

i /∂xj = Wj∂xj/∂x∗

i .

In view of the pressure gradient in the equation of motion, it is convenient to write it in covariant form with
momentum proportional to V, which in turn relates to circulation

∮

v∗···dx∗ =
∮

V···dx. On the other hand,
the rate of working of a body force F∗ is v∗···F∗ = v···F, where F is the resulting covariant body force in
the transformed equation of motion. The material derivative needed in the advection of momentum (or any
other advected quantity for that matter) takes the form

D/Dt∗ := ∂/∂t∗ + v∗···∇∇∇∗ = ∂/∂t + u···∇∇∇ =: D/Dt ,

in which u = v−w is the contravariant form of the advective velocity v∗−w∗ in the moving x∗(x, t)–frame.
The three velocities u, v and V, which we have identified, have an important role to play in the hybrid

Eulerian–Lagrangian approach. In practise to use them we consider small displacements x∗ − x and write

v∗(x∗, t∗) = Dx∗/Dt∗ = u + Dξξξ/Dt , where x∗(x, t) = x + ξξξ(x, t) (L � |ξξξ| � lmax) .

We take statistical averages · · · and demand that u = u and ξξξ = 0. By this device u is the the Lagrangian
average of v∗(x∗, t∗) (i.e. at fixed x following the motion of the fluctuating displacement ξξξ).

3. Results

We outline the equations for the contravariant and covariant vector fields that emerge from the govern-
ing equations of the full rotating MHD system (as reviewed in [5]). Holm [6] calls them the Generalised
Lagrangian Mean (GLM) equations. We consider their expansions up to O(|ξξξ|2) extending on the earlier de-
velopments of [3], [4] and [6]. Holm has also proposed an Eulerian counterpart which he calls the generalised
lagrangian mean (glm) equations derived from Hamilton’s principle applied to an averaged Lagrangian. The
new equations are motivated by the wish to have an Eulerian formulation which contains the merits of the
GLM system (such as the conservation of mean circulation for Euler’s equations). We consider the relation
between the GLM and glm systems as formulated in terms of Eulerian variables. The absence of certain
O(|ξξξ|2) terms in the glm system suggests that they have been filtered out on averaging the Lagrangian.
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Accurate and efficient simulation of strongly turbulent flows is a prevalent challenge in many atmospheric,
oceanic, and astrophysical applications. New simulation codes are being developed to investigate such flows
in the parameter regimes that interest the scientific communities corresponding to these application areas.

In the case of nonmagnetized fluids, nonlinearities prevail when the Reynolds number Re is large. The
number of degrees of freedom in three dimensions increases as Re9/4 as Re tends to infinity in the Kolmogorov
1941 framework. For geophysical and astrophysical flows, often Re � 108. Computations of turbulent flows
must contain enough scales to encompass the energy-containing and dissipative scale ranges distinctly. Three-
dimensional compressible flow simulations show that in order to achieve the desired scale ranges, uniform
grids must contain at least 20483 cells [5], a feat which, today, can barely be accomplished. Indeed, a
pseudo-spectral Navier-Stokes code on a grid of 40963 uniformly spaced points has been run on the Earth
Simulator [2], with a Taylor Reynolds number (∝

√
Re) of ≈ 1200, still far from what is required for most

geophysical and astrophysical flows.

We have been engaged in the development of a high-order code for modeling turbulence in a variety of
systems. Our code, the geophysical and astrophysical spectral-element adaptive refinement (GASpAR) code,
is an object-oriented framework for solving PDEs using high-order adaptive methods. Like most spectral-
element codes, GASpAR combines finite-element efficiency with spectral-method accuracy. It is designed to
be flexible enough for a range of geophysics and astrophysics applications where turbulence or other complex
multi-scale problems arise. The formalism accommodates both conforming and non-conforming elements,
and it includes a new formulation of dynamic adaptive refinement (DARe) of non-conforming h-type [4],
with the order of polynomials in each element kept fixed. The code has been tested thoroughly in two space
dimensions, but is written in a modular fashion that can be extended readily to three dimensions.

One of the main goals of our development effort is to ask, if the significant structures of the flow are
indeed sparse, so that their dynamics can be followed accurately even if they are embedded in random noise,
then does dynamic adaptivity offer a means for achieving an otherwise unattainable large (effective) number
of degrees of freedom? The figure represents an example of adaptivity for the merger of three vortices for
two dimensional Navier–Stokes as also computed in [3].

A new spectral-element solver for incompressible magnetohydrodynamics (MHD) has recently been de-
veloped for the GASpAR code based on the Elsässer formulation [1]. This solver, like the existing ones,
automatically takes advantage of the DARe capability offered by the code, as well as of other user-defined
adminstration features.

In this talk, we will describe the MHD solver, and present some preliminary results, primarily with regard
to validation in the laminar and turbulenct regimes. This description will be couched in a brief discussion
of the code and of the DARe methodology. Some examples will be given. We will also discuss some of the
issues involved in modeling MHD turbulence using spectral-element methods.



Figure 1: 3-vortex simulation showing merging of two positive (red) and one negative (blue) vortices. Four
levels of refinement are used with order 7 in each element.

———————————
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The classical mathematical tool to analyze scales in spatial functions u(~x) has been the Fourier basis
F~k(~x) := e2πi~k·~x. The wavevector ~k labels global scale content, i.e., if a certain Fourier component û~k := 〈F∗~ku〉
is relatively large then on average over the spatial domain the corresponding field u(~x) exhibits relatively
significant structure at the corresponding scale |~k|−1. There is information only about scale but not the ~x
location where the structures occur1, which can be a serious limitation. Several remedies have been developed
to regain that information. Fournier [1, 2, 3], and op. cit. therein, have generalized localized scale interactions
(LSI2) from wavevector components û~k to wavelet components ũ~̀ := 〈ψ∗~̀u〉 using some basis ψ~̀(~x). These
LSI analyses offer a multiscale analysis tool for which turbulence science has been striving, for a long time
and for many purposes [2, for a review].

Another well known approach to multiscale simulation is adaptive mesh refinement (AMR). All AMR
codes involve partitioning the problem’s spatial domain D into disjoint elements D =

⋃
~̀∈L X~̀, and most AMR

codes use the finite-element method (FEM) or similar discretizations with a small set of values representing
the global solution u(~x, t) locally in each X~̀. Thus most AMR simulations are intrinsically locally low-order
w.r.t. the X~̀ size h~̀. However, a few AMR codes are locally high-order w.r.t. a parameter p~̀ in each X~̀; these
include adaptive spectral-element methods (SEMs, e.g., [6, 7, 8] and op. cit. therein). The combined h-p
analyses built into SEM make it very effective for complicated flows [5, 6, 7, 8]. Using SEM combined with
LSI, we can quantitatively model and analyze many important phenomena that involve scale interactions
localized in parts of the domain, and that heretofore were mainly only described qualitatively or heuristically.

The fundamental cause of scale interactions is the presence of nonlinearities in the governing dynamics.
Nonlinear terms such as ~v·~∇~v at high Reynolds number can generate significant phenomena, such as co-
herent vortices, fronts, tubes etc. Historically, important and insightful diagnostic tools for understanding
these interactions have been linked to “spectral energetics”, e.g., the analysis of Fourier spectra and triad
interactions3

TF
a,b,c := ~̂u∗~ka

·(~̂u~kb
·2πi~kcδ~ka,~kb+~kc

)~̂u~kc
(1)

between modes a, b and c that describe global scale interactions without ~x-location information. Using the ψ~̀

basis, scale resolution of u is degraded,4 from a sharp wavevector value ~k down to approximate wavevector
elements ±~k ∈ K~̀ := supp ψ̂~̀ ≈ ×d

α=1[Kα, 2Kα] (where Kα := 2blog2 `αc), while location information is
augmented, from lack-of-information up to element locations ~X := ~~K−1·(~̀− ~K) (where ~~K := diag ~K). We
obtain new energetics diagnostics describing both scale and location:

Ta,b,c := ~̃u∗~̀
a
·(~̃u~̀

b
·〈ψ∗~̀

a
ψ~̀

b

~∇ψ~̀
c
〉)~̃u~̀

c
, (2)

1Location information is dispersed among all arg û~k
.

2Apologies to the Shamen.
3In practice, Ta,b,c is symmetrized to isolate boundary-flux or divergent-~v contributions so that “detailed conservation”

Ta,b,c + Tb,c,a + Tc,a,b = 0 holds.
4As required by the Heisenberg uncertainty principle; note that |K~̀| &

Qd
α=1 Kα = |X~̀|−1.
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Figure 1: Schematic illustration of triad interaction in Fourier space (1), left, and wavelet space (2), right.

the triadic interaction among three structures in ~u that have characteristic scales ~Ka, ~Kb, ~Kc and locations
~Xa, ~Xb, ~Xc (Fig. 1). One can see that the triad (2) generalizes the Fourier triad (1). In fact, (2) is even
more general, in that the ψ~̀ can be any orthogonal basis. In order to construct LSI we may use a SEM basis
ψ~̀ built up from a one-dimensional single-element basis ψj(ξ) that can be either Legendre or interpolation
polynomials for 0 ≤ ξ ≤ 1. In the Legendre case the indexes ~ augment the spectral resolution, while in the
interpolation case they augment the spatial resolution.5 Recently it was shown that it is also possible to use
a SEM basis to compute (1) to machine precision [4].
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Ever since the phenomenological description of Hydrodynamic turbulence by Kolmogorov
in 1941 there have been many attempts to derive a similar description for turbulence in
conducting fluids (i.e Magneto-Hydrodynamic turbulence). However such a description is
going to be based inevitably on strong assumptions that do not necessarily carry over from
the Hydrodynamic case. In this talk I will discuss some of the properties of the energy and
helicity cascade in turbulent MHD [5, 6, 4, 2] flows and focus on the differences with the
hydrodynamic case [3, 1]. The investigation is going to be based on the analysis of transfer
functions obtained from high resolution direct numerical simulations. Our results show that
the transfer of kinetic energy from the large scales to kinetic energy at smaller scales, and
the transfer of magnetic energy from the large scales to magnetic energy at smaller scales,
are local, as is also found in the case of neutral fluids, and in a way that is compatible
with Kolmogorov (1941) theory of turbulence. However, the transfer of energy from the
velocity field to the magnetic field is a highly nonlocal process in Fourier space. Energy
from the velocity field at large scales can be transfered directly into small scale magnetic
fields without the participation of intermediate scales. The cascade of magnetic Helicity in
MHD appear to be even more non-local processes. Some implications of these results to
turbulent cascade models will be discussed.

———————————
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Subgrid modeling of MHD flows is still under development. Most LES for hydrodynamic turbulence are
based upon self-similarity or universality, in that they assume a known power law of the energy spectrum.
For MHD, the kinetic energy is not a conserved quantity, and this poses a problem for the extension of such
techniques to this case. Additional difficulties arise from the fact that MHD has several regimes depending on
the relative strengths of the magnetic and velocity fields, their degree of alignment, and whether mechanical
or magnetic energy is injected into the flow. However, some LES have been developed for particular cases.
There exists LES for MHD turbulence with some degree of alignment between the fields, dissipative LES
which does not model the interactions between the two fields, and LES for low magnetic Reynolds number (see
[1] for references). A more generally applicable subgrid model that would also handle transitional flows (e.g.

dynamos) is then desirable. To this end, we investigate the Lagrangian averaged magneto-hydrodynamic
alpha (LAMHD−α) model. This model we have recently tested both in 2D and in 3D and it has been used
to examine the onset of the dynamo instability when the magnetic Prandtl number is small. Most of these
works compared the time evolution of ideal invariants for forced and free decaying turbulence, as well as the
evolution of energy spectra. Also, some statistical comparisons were performed (e.g. studying the behavior
of probability density functions). In this work, we apply a more stringent test to this model. Intermittency
is a well known feature of turbulent flows, associated with the existence of strong events localized both in
space and time. Intermittency can trigger large scale events, affect the transport coefficients, or give rise
to corrections in the turbulent scaling. As a result, whether a subgrid model can capture the statistics of
intermittent events is of utmost importance to model astrophysical or geophysical flows. This study also
requires high order statistics, thereby extending comparisons between direct numerical simulations (DNS)
and α-models.

The equations for LAMHD−α are

∂tu + us · ∇u − Bs · ∇B + (∇us)T · u + (∇B)T · Bs + ∇π = ν∆u,

∂tBs + us · ∇Bs − Bs · ∇us = η∆B , (1)

where u and B are the velocity and magnetic fields (both divergence free), ν is the viscosity, and η is
the diffusivity. The subscript s denotes smoothing obtained by inverting the relations, u = (1 − α2∆)us,
B = (1 − α2

M∆)Bs. We compare intermittency in (1) to that of DNS of MHD, regarded as true at a given
Reynolds number. We define the longitudinal structure function of the Elsässer variable z+ = u + B as
S+

p (l) ≡ 〈|δz+
L |p〉 where δz+

L = (z+(x + l) − z+(x)) · l/l is the longitudinal increment of z+. Four sets of 2D
simulations were computed with periodic boundary conditions, one set of MHD DNS with 10242 grid points,
and three sets of LAMHD−α simulations, 5122 and α = αM = 6/512, 2562 and α = αM = 6/256, and 2562

and α = αM = 6/128. All simulations were identical with regards to dissipation (η = ν = 1.6 × 10−4) and
forcing (in the Fourier ring k = [1, 2] with random phases in momentum and vector potential).

With the Extended Self-Similarity (ESS) hypothesis we determined the relative scaling exponents, ξ+
p ,

from S+
p (l) ∼ [L+(l)]ξ

+
p where L+ ∝ l from the Kármán-Howarth theorem (see [1] for details). Figure 1



compares the scaling exponent, ξ+
p , for the DNS runs and the three sets of LAMHD−α runs. In the figure, the

She-Lévêque (SL) formula for MHD is shown as a reference, ξp

ξ3
= p

6 +1−
(

1
2

)p/3. The α−model captured the
high-order statistics and the anomalous scaling of the longitudinal structure function exponents (to within
the errors of our statistics), with a net gain in speed close to a factor of 16. For lower order structure
functions, very little contamination of the scaling could be detected at scales larger than α.

In current sheets, where magnetic reconnection occurs, the magnetic field and the current rapidly change
sign. To preserve reliable statistics of these events in subgrid models of MHD turbulence is of importance
in many problems. In order to measure fast oscillations in sign of a field on arbitrary small scales, the
cancellation exponent was introduced (see [2] for references). The signed measure for the current jz(x) on a
set Q(L) of size L is µi(l) =

∫

Qi(l)
dx jz(x) /

∫

Q(L) dx |jz(x)| where {Qi(l)} ⊂ Q(L) is a hierarchy of disjoint
subsets of size l covering Q(L). The partition function χ measures the cancellations at a given lengthscale
l, χ(l) =

∑

Qi(l)
|µi(l)|. We can study the scaling behaviors of the cancellations defining the cancellation

exponent κ, where χ(l) ∼ l−κ. Positive κ indicates fast changes in sign on small scales. This exponent can
also be related with the fractal dimension D of the structures, κ = (d − D)/2, where d is the number of
spatial dimensions of the system. The evolution of the cancellation exponent as a function of time for free
decaying simulations is shown in Fig. 2. The maximum of κ takes place slightly later than the maximum of
magnetic dissipation. Note that the alpha-model captures the time evolution of the cancellation exponent,
as well as the fractal structure of the problem as time evolves.

Future challenges will include implementation of LAMHD−α in domains with boundaries and the study
of intermittency for magnetic Prandtl numbers besides unity.

Figure 1: Structure function scaling exponent: ξ+
p

versus p. 10242 MHD are the pluses, for LAMHD−α
5122 are the diamonds, 2562 (α = 6/256) are tri-

angles, and 2562 (α = 6/128) are the squares. The

error bars are the error to the least-squares fit.

Figure 2: Time history of the cancellation exponent

(thick lines) for the three free decaying runs, and of

η
〈

j2
z

〉

, where the brackets denote spatial average.
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The scale-similar model of [1] et al. and a dynamic similarity model have been applied to a rotating
convection-driven dynamo simulation. The results from the similarity model, using unit constant coefficients,
are satisfactory: the large-scale magnetic/kinetic energies and r .m.s magnetic/velocity field fluctuations are
in much better agreement with the highly-resolved solution than with the low resolution simulation. The
model is found to be much less sensitive to the filter scale than the a priori test. Implementation of a
dynamic procedure to the similarity model gives better agreement provided that the two filtering scales are
properly chosen. The model coefficients from the dynamic procedure are less than 1.0, in the range [0.4, 0.8].

[A mathematical dynamo model]

Equations: The governing Boussinesq equations for a rotating convection-driven plane layer dynamo

ez × v = −∇p + (∇×B)×B + qRaezT + Ek∇2v, (1)

∂B
∂t

= ∇× (v ×B) +∇2B, (2)

∂T

∂t
+ v ·∇T = q∇2T + vz, (3)

∇ · v = 0 , ∇ ·B = 0. (4)

Here v, B and T are the dimensionless velocity, magnetic field and temperature fluctuation, respectively. The
dimensionless t is the magnetic diffusion time. The Roberts number q = κ/η, the modified Rayleigh number
Ra = gᾱβ̄d2/2Ωκ, the Ekman number Ek = ν/2Ωd2 and the magnetic Ekman number Ekη = η/2Ωd2.
[Large-eddy simulation]

In the LES approach, the large-scale velocity v is obtained by convolution, through a spatial filter function
G∆(r, x) [2]:

v(x, t) =
∫

G∆(r,x)v(x− r, t)dr . (5)

where ∆ is the filter width. The velocity v(x, t) is decomposed into a large-scale (or resolved) part v and a
subgrid (or under-resolved) part v′ as v = v + v′.
Equations: A LES representation of the dynamo model:

ez × v = −∇p + ∇×B×B−∇ · τ + qRaTez + Ek∇2v, (6)

∂B
∂t

+ v ·∇B = B ·∇v −∇ · τB +∇2B, (7)



∂T

∂t
+ v ·∇T = −∇ ·Q + vz + q∇2T , (8)

∇ · v = 0, ∇ ·B = 0. (9)

[The subgrid-scale(SGS) terms]

The influence of the subgrid-scales on the resolved scales is embedded in SGS terms:

1. Reynolds stress:
τ = Ekη(vv − v v)− (BB−BB), (10)

2. Turbulent electromotive force (emf):

τB = vB− vB− (Bv −Bv), (11)

3. Heat flux:
Q = vT − v T . (12)

In our investigation the inertial forces are negligible, the magnetic Ekman number Ekη = 2Ω/η is zero, so
the Reynolds stress τ reduces to τ = −τMax where τMax = BB − BB is generally called ‘the Maxwell
stress tensor’.
[The similarity model]

We model the SGS terms using the similarity model.

1. Maxwell stress:
τMax

sim = Cmom(B̃B− B̃ B̃) , (13)

2. Turbulent electromotive force:

τB
sim = Cind(ṽB− ṽ B̃− (B̃ v − B̃ ṽ)) , (14)

3. Heat flux:
Qsim = CT (ṽ T − ṽ T̃ ) . (15)

where,˜represents a second filtering operation at a scale λ with λ/∆ ≥ 1. The model coefficients Cmom =
Cind = CT = 1 in the similarity model. In a dynamic similarity model , these models can be adjusted to
vary in time and space, i.e. Cmom(z, t), Cind(z, t), CT (z, t).
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Modelling disparate scale interactions within MHD remains an ongoing theoretical and computational
challenge. In order to facilitate computation, high Reynolds number systems are often described via the
introduction of phenomenological dissipation coefficients as a means of modelling stresses exerted by the
unresolved scales. The temporal and spatial evolution of these phenomenological coefficients are usually
described via heuristic turbulence models. As the dynamics of the unresolved scales play a crucial role in
the evolution of the overall system, especially in cases where inverse cascades are present, a simple dynamic
sub-grid scale model for the unresolved turbulent scales, that is rigorously derivable from the original fluid
equations, is clearly desirable.

In this work, we present a minimal self-consistent model of the multi-scale interaction of large scale
MHD flows with small scale drift wave turbulence. Here we utilize the temporal and spatial scale separation
between the large scale MHD flows and the small scale drift wave turbulence to separate the system into a
set of resolved and unresolved variables. Wave kinetics and adiabatic theory are used to treat the feedback
of the large scale MHD flows on the drift waves via shearing and advection. The stresses exerted by the self-
consistently evolved drift wave population density on the MHD flows are calculated by mean field methods.
This model has the advantage of being both systematically derivable from the original fluid equations without
introducing any free parameters, as well as being simple to implement. The principal effect of the drift waves
is to pump the resonant low-m mode via a negative viscosity, consistent with the classical notion of an inverse
cascade in quasi-2D turbulence. This mechanism is similar to that by which drift wave turbulence drives
zonal flows [1].

We study, two types of low-m, resonant structures. The first is a localized, electrostatic vortex mode,
driven unstable by Reynolds stresses exerted by the unresolved scales. The width of the mode is set by resis-
tively dissipated magnetic field line bending, and whose growth rate is given by γ =

(
|νT |2/3

/η1/3
)

(vAqy/Ls)
2/3

, where νT is the turbulent viscosity. A unique feature of this mode, is that the inverse cascade is ultimately
terminated via Ohmic heating as opposed to collisional damping as is the case of m=0 zonal flows.

The second mode is similar to the usual tearing mode as discussed by Furth, Killeen, and Rosenbluth [2],
which matches the visco-resistive layer to an MHD exterior via ∆′ . The calculation is complicated by the
presence of a strong Reynolds stress term emanating from the background turbulence, which induces strong
shear flows within the interior layer. In fact, we find that the magnitude of the turbulent stresses exerted by
the drift waves are consistent with a gyro-Bohm diffusivity, and thus, usually exceed the magnitude of the
inertia term within the tearing mode equations. Outgoing wave boundary conditions are imposed in order
to effect the match with the exterior region. The growth rate in the turbulent viscosity dominated regime is
given by γ =

(
η5/6/ |νT |1/6

)
(qyvA/Ls)

1/3 ∆′ .
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and turbulent state in the Earth’s core
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The Earth’s magnetic field is generated by fluid motion in the liquid outer core, where highly turbulent
flow is expected because of extremely low viscosity. Since the core is located deep inside the Earth and
surrounded by weakly conductive and partially magnetized mantle and crust, it is inherently difficult to
infer small-scale features of the core turbulence by direct observation. On the other hand, the geomagnetic
dipole moment, which is nearly axial and intrinsically stronger than other multipoles, is a relatively robust
index of the geomagnetic field and can be estimated by paleomagnetic observation throughout a long time
range, giving the possibility that the turbulent nature is imprinted in its time series.

Consolini et al. [1] reported that the geomagnetic power spectral density was found to be proportional
to f−11/3 by using recent annual mean data at geomagnetic observatories, where f denotes frequency.
They concluded that it should be related to turbulent motion at the surface of the core where a strong
magnetic field is present. A spectrum of longer time scales can be estimated by historical, archeomagnetic
and paleomagnetic data [2]. Recent estimation by Constable and Johnson [3] clearly shows that the power
spectral density of the geomagnetic dipole moment has two corner frequencies, the first one being about 0.02
kyr−1 (50 kyr in period) that divides frequency ranges proportional to f0 and f−5/3, and the second one
being about 2 kyr−1 (500 yr in period) from which a higher frequency range follows with a steeper spectral
slope. The higher spectral range seems to connect to the one reported by Consolini et al. [1]. Although
Constable and Johnson did not mention any implications of turbulence, their data seem to tell us much
about magnetohydrodynamic motion hidden inside the Earth.

A rate of change of the axial magnetic dipole moment (mz) can be expressed as the surface integral of
the azimuthal electric current density (Jφ); that is,

dmz

dt
= −3

2
ηc2

∮

r=c

Jφ sin2 θ dθdφ ≡ S(t), (1)

provided that the Earth’s core is spherical and surrounded by a solid insulator [4]. Here, (r, θ, φ) are the
spherical polar coordinates and η and c are the magnetic diffusivity and the radius of the core, respectively.
Once the power spectral density |m̃z(f)|2 is observed, it is possible to infer that of the surface current integral

|S̃(f)|2 = (2πf)2|m̃z(f)|2, (2)

implying that |S̃|2 of the Earth’s core would be characterized by three frequency ranges whose slopes are,
from lower to higher frequencies, f2, f1/3 and f−5/3, respectively. It is of particular interest that |S̃|2 has a
peak around f = 2 kyr−1 and a well-known Kolmogorov slope appears in the higher frequency range.

For further investigation, we carried out a computer simulation of three-dimensional, time-dependent,
thermally driven spherical MHD dynamo. The model is almost the same as our previous geodynamo
model [5], but the Ekman number is slightly lowered to 10−5 and artificial hyper-diffusivities are absent.
The Prandtl numbers are all unity. The generated magnetic field is dominated by a quasi-stable axial dipole
field. The relation (2) is confirmed by calculating S̃ and m̃z independently. The calculated power spectral
density |S̃|2 bears a remarkable resemblance to the observed one. Figure 1 shows that |S̃|2 has a broad peak
around the period of 5 kyr that divides the frequency ranges proportional to f1/3 and f−5/3.
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Figure 1: A power spectral density of the surface
current integral |S̃(f)|2 estimated from the numeri-
cal model. Two data sets are used to connect lower
and higher frequencies. Dotted lines represent f1/3

and f−5/3 slopes. Time is scaled by c2/η = 192 kyr.
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Figure 2: Time-averaged squared Fourier coeffi-
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∫

Jφ sin2 θ dθ as a function of the azimuthal
wavenumber m. Dotted lines represent m1/3 and
m−5/3 slopes.

The spatial pattern of the surface zonal current looks like a number of small-scale patches of either
positive and negative signs. The shape of the patches is so elongated in the θ-direction that the sectorial
components dominate when expanded by spherical harmonics. Considering a stochastic behavior of the
patches in time and space, we could relate S̃(f) to the time-averaged wavenumber spectrum of Jφ sin θ.
Figure 2 indeed shows similarity between them.

The surface electric current reflects the fluid motion inside the core, because an Ekman-Hartmann bound-
ary layer forms beneath the core surface in which Coriolis and Lorentz forces are mutually related. Therefore,
|S̃|2 gives some information about turbulent spectrum of the core. In conclusion, it is suggested that the ge-
omagnetic time spectrum reflects time-averaged small-scale structures of electric current and velocity inside
the core. The difference of the peak frequencies in |S̃|2 spectra between the Earth and the numerical model
indicates that the time-averaged electric current and velocity fields in the Earth have typical wavenumber
around m = 50 ∼ 100 and their power decreases in proportion to m−5/3 in higher wavenumbers.

———————————

References

[1] G. Consolini, P. Michelis and A. Meloni 2002. Fluid motions in the Earth’s core inferred from time
spectral features of the geomagnetic field, Phys. Rev. E 65, 037303.

[2] R. T. Merrill, M. W. McElhinny and P. L. McFadden 1996. The magnetic field of the Earth (Academic
Press).

[3] C. Constable and C. Johnson 2005. A paleomagnetic power spectrum, Phys. Earth Planet. Inter. 153,
61–73.

[4] P. A. Davidson 2001. An introduction to magnetohydrodynamics (Cambridge Univ. Press).

[5] A. Sakuraba and M. Kono 1999. Effect of the inner core on the numerical solution of the magnetohydro-
dynamic dynamo, Phys. Earth Planet. inter. 111, 105–121.



GTP Workshop on
Modeling MHD Turbulence; Applications to
Planetary and Stellar dynamos
at NCAR, 27-30 June, 2006, Boulder, CO, USA

A High Order WENO Finite Difference Scheme
for Incompressible Fluids and Magnetohydrodynamics

Cheng-Chin Wu
Institute of Geophysics and Planetary Physics

University of California, Los Angeles, CA 90095

We present a high-order accurate weighted-essentially-non-oscillatory (WENO) finite difference scheme
for solving the motion of incompressible fluids, both for non-magnetic and magnetohydrodynamic (MHD)
systems. WENO schemes were originally developed for the compressible Euler equations. They are based
on essentially non-oscillatory (ENO) schemes. The key idea in ENO schemes is to approximate the fluxes
at the cell boundaries with high order accuracy by using the smoothest stencil among several candidates,
and at the same time to avoid spurious oscillations near shocks and discontinuities. The WENO schemes
go one step further by taking a weighted average of all candidates. The weights are adjusted by the local
smoothness of the solution so that essentially zero weights are given to non-smooth stencils while optimal
weights are prescribed in smooth regions. Near discontinuities, WENO schemes and ENO schemes behave
in much the same way but, in the smooth regions of the solution, WENO schemes act more like an upstream
centered scheme. In principle, any r-th order accurate ENO scheme can be converted into a (2r-1)-th order
accurate WENO scheme.

WENO schemes were first developed in a finite volume formulation by Liu, Osher and Chan [1994] for
one-dimensional conservation laws. A finite difference version for multidimensional conservation laws was
created by Jiang and Shu [1996]. The finite difference WENO scheme was applied to compressible MHD by
Jiang and Wu [1999]. Their code forms the basis of this incompressible code.

As in many modern shock capturing methods, WENO schemes are based on local characteristic decom-
position of waves and on upwind methods. These two features are equally important for incompressible
systems. The wave decomposition of this incompressible MHD code is accomplished by using the character-
istic, Elsasser variables. In the code, the WENO method is used in the spatial discretization. High-order
Runge-Kutta methods are employed for time integration and the fractional-step method of Kim and Moin
[1985] is used to enforce the incompressibility condition.

Numerical results from our new 5th-order accurate code demonstrate that the scheme perform well for
one-dimensional Riemann problems, a two-dimensional double-shear flow problem, and the two-dimensional
Orszag-Tang MHD vortex system. They establish that the WENO code is numerical stable even when there
are no explicit dissipation terms. The code competes on equal terms with pseudo-spectral and spectral
methods in regions where the solution is smooth. It can also treat discontinuous data; the method has an
advantage over spectral methods in regions where gradients are large.
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Determining the onset conditions for magnetic field growth in magnetohydrodynamics is fundamental to
understanding how astrophysical dynamos such as the Earth, the Sun, and the galaxy self-generate magnetic
fields. These onset conditions are now being studied in laboratory experiments using flows of liquid metals [1].
The Madison Dynamo Experiment, currently the largest of the devices, is used to study a flow composed of
two counter-rotating helical vortices predicted to produce a growing magnetic field for sufficiently fast flow
speeds [2]. The flow is generated by impellers in a 1 m diameter sphere filled with liquid sodium. Liquid
metals generally have a low rate of viscous diffusion compared with the rate of resistive diffusion, e.g. the
Prandtl number for liquid sodium is Pr = µ0σν ∼ 10−5 where σ is the conductivity and ν is the viscosity.
Due to the low viscosity, the flows generated in the experiment tend to be quite turbulent. One of the goals
of the experiment is to address the effect of turbulence on the threshold conditions for a dynamo.

The threshold of magnetic field generation due to the dynamo instability is governed by the magnetic
Reynolds number Rm = µ0σav0 where a is the radius of the sphere and v0 is a characteristic flow speed [3].
The magnetic Reynolds number increases for larger impeller rotation rates, and hence larger mean flow
speeds. The flow is predicted to generate a magnetic field for Rm > Rmcrit, where Rmcrit is calculated from
a model of the mean velocity field constructed from velocity measurements in a full scale water model of
the sodium experiment [4]. The structure of the magnetic field generated by the flow is predicted to be a
dipolar with an orientation perpendicular to the symmetry axis of the flow as seen in Fig. 1. The growth
rate of the field as a function of Rm, shown by the solid curve in Fig. 2, becomes positive for Rm ≥ 190.

Figure 1: A schematic of the Madison Dy-
namo Experiment with superimposed magnetic
field lines of the theoretically predicted dominant
magnetic field.
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Figure 2: Growth rate of the transverse dipole field versus
Rm for the mean flow (solid) and for a slightly different
flow geometry (dashed). The vertical lines identify Rmcrit

for each case. The PDFs of Rm for flows with three differ-
ent impeller rotation rates are shown to demonstrate the
increasing overlap of the ranges of Rm and Rmcrit.
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Figure 3: Time series of the energy in the transverse
dipole field for an impeller rotation rate of 10 Hz.
The diamonds mark the peak of a burst where the
energy exceeds 50% of its maximum value.
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Figure 4: The ensemble average of bursts from three
time series. The averaged burst is used to calculate
the growth rate.

The mean flow, however, is not the most efficient flow geometry for exciting a magnetic field. A flow with a
slightly different geometry has a much lower Rmcrit as seen from the dashed curve in Fig. 2 demonstrating
that the threshold for field generation is extremely sensitive to the flow geometry.

Due to the simply-connected geometry of the experiment, turbulent eddies range from the viscous dissi-
pation scale (on the order of 1 mm) up to the largest scale of the flow. The large-scale eddies can change the
peak flow speed effectivly varying Rm. An estimate of the variation in Rm based on the measured velocity
fluctuations is shown in Fig. 2. The eddies can also change the flow geometry which can cause significant
variations of Rmcrit. Thus, although the the mean flow may be subcritical, there can be times for which
the instantaneous flow satisfies Rm > Rmcrit. The magnetic field momentarily grows while this condition is
satisfied and then decays. Hence, the magnetic field is expected to have intermittent bursts.

These bursts are observed in the sodium experiment. Figure 3 shows a time series of the energy in the
transverse dipole component of the measured magnetic field. The bursts are ensemble averaged to determine
typical characteristics. A burst is defined to occur when the energy in the transverse dipole field exceeds
a certain threshold. For this analysis, the threshold is 50% of the maximum energy of the time series.
This threshold is sufficiently small to capture a large number of bursts yet significantly larger than the
mean energy (about two standard deviations above the mean energy for each time series). The bursts are
averaged together and the growth rate is determined by an exponential fit to the curves shown in Fig. 4. The
bursts become more frequent and have faster growth rates at larger values of Rm. They become stronger in
amplitude but shorter in duration as the turnover time of the large eddies decreases.

The results presented in this paper demonstrate how turbulence in a simply-connected geometry changes
the onset conditions of the dynamo. Rather than a smooth transition from damped to growing fields, the
transition is characterized by intermittent magnetic field bursts which may be relevant to some dynamo
models [5].
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Small scale versus large scale dynamos. A good definition of large scale and small scale dynamos is not
available. For now, let us say that small scale dynamos have no mean flow (U = 0) and produce no mean
field (B = 0). Here we reserve ourselves some freedom in the definition of meaningful averages (ensemble,
time, or spatial averages over one or two coordinate directions, depending on the nature of the problem).
Large scale dynamos produce a mean field (B 6= 0), but may or may not have a mean flow (αΩ and W × J


versus α2 dynamos, for example). By this definition, dynamos in Taylor-Green flows [1] do have a finite
time-averaged flow and would not be small scale dynamos.


Large scale dynamos. All known large scale dynamos (αΩ, W × J, and α2 dynamos) produce magnetic
helicity, which reacts back on the dynamo. As a consequence, the mean field saturates at a low value,


B
2
� B2


eq ≡ 〈µ0ρu
2〉. It is demonstrated (Fig. 1) that, by allowing for magnetic helicity fluxes out of the


domain, the large scale field is able to saturate at equipartition field strength.


Figure 1: Evolution of the energies of the total


field 〈B2〉 and of the mean field 〈B
2
〉, in units of


B2
eq, for runs with non-helical forcing and open or


closed boundaries; see the solid and dotted lines, re-
spectively. The inset shows a comparison of the


ratio 〈B
2
〉/〈B2〉 for nonhelical (α = 0) and heli-


cal (α > 0) runs. For the nonhelical case the run
with closed boundaries is also shown (dotted line near


〈B
2
〉/〈B2〉 ≈ 0.07). Adapted from Ref. [2].


Figure 2: Evolution of the field strength obtained
by solving the mean field equations with vertical ad-
vection (solid line, CU = 0.3) and without it (dashed
line, CU = 0). Here, CU = |U|max/(ηtk1) is a nondi-
mensional measure of the strength of advection out of
the dynamo domain. The dotted curve, obtained for
CU � 1, shows that even weak advection can affect the
long-term evolution of magnetic field. The inset shows
similar results for CU = 0.1 (solid), 1.5 (dashed), 2
(dotted) and 3 (dash-dotted). Adapted from Ref. [3].


The results of simulations are qualitatively, and in some cases also quantitatively, well reproduced by
mean field models where the effect of magnetic helicity fluxes enters into the dynamical feedback formula
for the magnetic alpha effect (even when there is no kinetic alpha effect!).


Magnetic helicity fluxes that are known to work include the shear-driven Vishniac-Cho flux [4, 5, 6],
which can be written in the form F ∝ (SB) × B and an advectively driven flux [3] of the form F ∝ αMU,







where αM is the magnetic α effect. The former is the one operating predominantly in the simulations in
Fig. 1, while the latter one operates in the mean field model shown in Fig. 2.


Small scale dynamos. An explanation is in order as to why simulations of dynamo action in spherical
shells may not yet have shown strong large scale dynamos. The simulations of Brun et al. [7] show dynamo
action at unit magnetic Prandtl number (PrM = 1). As the value of PrM is decreased, one must increase the
fluid Reynolds number Re at least by the same amount to maintain the same magnetic Reynolds number Rm,
but this is already prohibitively expensive. Solar-like simulations at PrM < 1 have not yet been considered,
but it is conceivable that the critical magnetic Reynolds number, Rm,crit, increases with decreasing PrM ,
as is found for typical small scale dynamos with zero mean flow [8]. Thus, the tentative suggestion is that
the simulations of Brun et al. show dynamo action that belongs to the class of small scale dynamos (even
though they do have a mean flow). This type of dynamo action would go away for smaller value of PrM ,
provided they value of Rm is still not very large. At the same time, the large scale dynamo effect may still
be sub-critical, i.e. shear and the effective α, or some other large scale effect, are still too weak, and the
effective turbulent diffusivity is still too large.


Implications for LES. The indications are that, at low values of PrM , when the values of Rm are still
small enough to allow a direct simulation of the induction equation, LES (including less advanced “tricks”
such as Smagorinsky and hyper viscosity) for the momentum equation, produce accurate results [8] for the
onset of dynamo action. However, similar approaches for the magnetic field are difficult and often not
successful [9, 10]. Successful LESs for MHD would need to incorporate magnetic helicity fluxes (for large
scale dynamos) and must somehow incorporate the fast growth at the Kazantsev (resistive) scale (for small
scale dynamos).


———————————
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