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Geophysical Turbulence Program - NCAR 
 
Background and History 
Research on turbulence has been a significant part of the NCAR scientific program since it’s 
beginning in the early 1960s. The original scientific leaders of NCAR recognized that in order to 
understand the dynamics of the atmosphere, the oceans, the climate, the sun and solar-terrestrial 
interactions, understanding relevant turbulent processes would be essential. A number of 
scientific appointments in the first 10 to 15 years of NCAR’s existence reflected this view and 
provided an in-house base from which to productively interact and collaborate with the world 
turbulence community. From these beginnings has come a sustained emphasis on geophysical 
turbulence at NCAR, in the form of research, visitors, seminars and workshops that continues to 
this day. Most of this emphasis manifests itself currently in the Geophysical Turbulence Program 
(GTP). 
 
Organization 
GTP is a formal but loosely organized NCAR wide activity with a current annual budget of about 
$76K. There are currently more than forty members--scientific and technical staff, former 
scientific staff, and visitors--who have joined in GTP efforts. Every division of NCAR is 
represented except the Scientific Computing Division. The broad goal of GTP is to promote 
research, education and awareness of geophysical turbulence at NCAR and in the scientific 
community. The modest budget is spent on supporting visitors to NCAR to give seminars and 
interact, on workshops, and under special circumstances for direct support of staff. GTP members 
meet as a group to choose visitors to support, and select and develop workshop topics. They also 
give input to Advanced Study Program on selection of Postdoctoral Fellows with turbulence 
interests. 
 
Philosophical Orientation 
The orientation of GTP is very much toward basic science and is highly inclusive and committed 
to outreach. The full range of scientific methods--analytical theory, statistical analysis, stochastic 
modeling, algorithm development, numerical simulation, parameterization, closures for weak & 
strong turbulent flows, analyses of observational data, field programs, and laboratory 
experiments--are represented in the interests of the members, as well as in the seminar topics, and 
particularly the workshops. University faculty and scientists from abroad are heavily represented 
in the workshops. Many areas of geophysical and astrophysical fluid dynamics and 
magnetohydrodynamics are included, as are laboratory and engineering fluid dynamics. GTP 
treats the disciplinary boundaries between turbulence and fluid dynamics as fuzzy and porous and 
reaches well beyond what might be characterized as classical turbulence studies and topics. 
 
Workshops 
In many ways, the workshops and summer schools sponsored by GTP constitute the core of the 
program together with developing research tools. Special effort is made in choosing topics to 
reflect the universality and generality of the subject, and in bring together scientists from many 
disciplines in a forum that cuts across traditional disciplinary and application lines. 
 
 
For more information please contact: 
Liz Rothney (303) 497-1351 or rothney@ucar.edu 
Joe Tribbia (303) 497-1377 or tribbia@ucar.edu 
Or see the web site http://www.asp.ucar.edu/gtp/index.html 
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NCAR's Mesa Lab, Main Seminar Room, Boulder Colorado  


 
 
 
 
Organizers: Joe Tribbia, Yoshifumi Kimura and Jean-Marc Chomaz 
 


Coherent structures are ubiquitous in atmosphere and ocean, and clarifying their 
mechanism is directly related to delineating important aspects of geophysical turbulence. 
The purpose of this workshop is to survey the functions and features of coherent 
structures in geophysical turbulence by exchanging ideas from the theory, 
experiment/observation and computation. The following three topics are planned to be 
discussed in the workshop: 


1. Vortices and waves in rotating stratified flows (dynamics and stability) 
In the past few years great progresses have been made in identifying new 
instability mechanisms of coherent structures in stratified and rotating flows 
(elliptic, hyperbolic, helical centrifuge, inertial and zigzag instabilities). We 
consider how these instabilities may affect the mechanisms of vortices and waves 
in rotating stratified flows.  


2. Cascade processes in geophysical turbulence 
Having a clear insight on the energy cascade mechanism in relation with coherent 
structures in geophysical turbulence is very crucial to build well-defined and 
reliable turbulence models for the weather and climate forecast.  


3. Stirring, mixing and transport in geophysical flows 
Stirring and mixing are important in understanding the overall transport 
mechanisms in geo fluid dynamics as well as in engineering fluid dynamics. 
Transport of various geophysical quantities such as moisture, heat, salinity is a 
key ingredient for better prediction of atmosphere and ocean beyond the transport 
of energy and momentum for basic turbulence.  
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Schedule
 
Monday, 11 July 
 
8:00 - 9:00: Registration & Continental Breakfast  
 
Session Chair: Michael McIntyre 
 
9:00 - 10:00: Waves and vortices in rotating stratified turbulence 
  Peter Bartello, McGill University 
 
10:00 - 10:30: Unified scaling law for local and non-local enstrophy transfers in 


generalized two-dimensional turbulence 
Takeshi Watanabe, Nagoya Institute of Technology 


 
10:30 - 11:00: Break  
 
11:00 - 11:30: Multiscalar mixing in Kelvin-Helmholtz billows 
  Bill Smyth, Oregon State University 
 
11:30 - 12:00: Vortices in a stratified layer with horizontal shear 
  Sutanu Sarkar, University of California, San Diego 
 
12:00 - 13:30: Lunch  
 
Session Chair: David Dritschel 
 
13:30 - 14:00: Mechanisms of interaction between a coherent structure and turbulence 
  Fazle Hussain, University of Houston 
 
14:00 - 15:00: Dynamics of rotating turbulence with and without stable stratification: 


Statistical theory versus stability analysis 
  Claude Cambon, LMFA, Ecole Centrale de Lyon 
 
15:00 - 15:30: Break 
 
15:30 - 16:30: Formation and break-down of large-scale vortices in 2D confined 


turbulence 
 Herman Clercx, Eindhoven University of Technology 
 
16:30- 17:00: Effects of stable stratification on vortex pair dynamics 


Keiko Nomura, University of California, San Diego 
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Tuesday, 12 July 
 
Session Chair: Peter Bartello 
 
9:00 - 10:00: The persistence of balance in rotating stratified turbulence 
  David Dritschel, University of St. Andrews 
 
10:00 - 10:30: Internal solitary wave-induced global instability in shallow water benthic 


boundary layers 
  Peter Diamessis, University of Southern California 
 
10:30 - 11:00: Break  
 
11:00 - 11:30: Wavelet-based multiscale approach to extract coherent vortices, analyze 


transfer and compute homogeneous isotropic turbulence 
  Marie Farge, LMD-IPSL-CNRS, Ecole Normale Supérieure 
 
11:30 - 12:00: Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) accelerated 


inhomogeneous flows: Experiment, analysis & computation 
Norman Zabusky, Rutgers University 


 
12:00 - 13:30: Lunch 
 
Session Chair: Jackson Herring 
 
13:30 - 14:30: Coherent structures in fluid mechanics: Their role in mixing and transport 


in environmental flows 
  Joe Fernando, Arizona State University 
 
14:30 - 15:00: Break 
 
15:00 - 16:00: Simulations of the energy cascade in a strongly stratified fluid 
  Erik Lindborg, KTH, Department of Mechanics 
 
16:00 - Hiking 
 
 
Wednesday, 13 July 
 
Session Chair: Marie Farge  
 
9:00 - 10:00 The formation and stability of 3D vortices in stratified flows 
  Philip Marcus, University of California, Berkeley 
 
10:00 - 10:30: Stable patterns of surface waves in deep water 


Harvey Segur, University of Colorado, Boulder 
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10:30 - 11:00: Break 
 
11:00 - 11:30: Instability of co-rotating vertical vortices in a stratified fluid 
  Jean-Marc Chomaz, Laboratoire d'Hydrodynamique (LadHyX) 
 
11:30 - 12:00: Energetics of a field of submesoscale vortices resulting from the relaxation 
  of diapycnal mixing events 
  Pascale Lelong, NorthWest Research Associates 
 
12:00 - 13:30: Lunch 
 
Session Chair: Joe Tribbia 
 
13:30 - 14:00: Asymmetrization of jet profiles in beta-plane turbulence 
  Keiichi Ishioka, Kyoto University 
 
14:00 - 15:00: Wave-vortex duality: Repairing an Einsteinian mismatch 


Michael McIntyre, University of Cambridge 
 


15:00 – 15:30: Break 
 
15:30 - 16:00: High-order adaptive spectral element simulation of decaying 2D 


turbulence: a multiresolution perspective 
Aimé Fournier, NCAR 


 
16:00 - 17:00: Poster Talks (~2-min per person to discuss their poster presentation) 
 
17:00 - 18:15: Poster Session 
 
18:00 - 20:15: Banquet – Mesa Lab Cafeteria 
 
 
Thursday, 14 July 
 
Session Chair: Pascale Lelong 
 
9:00 - 10:00 Coherent structures in two-dimensional turbulence 


David Montgomery, Dartmouth College 
 
10:00 - 10:30: Large scale structures and energy transfer in hydrodynamic and 


magnetohydrodynamic turbulence 
  Pablo Mininni, NCAR 
 
10:30 - 11:00: Break 
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11:00 - 12:00: Turbulence in strongly-stratified fluids 
  Jim Riley, University of Washington 
 
12:00 - 13:30: Lunch 
 
Session Chair: Annick Pouquet 
 
13:30 - 14:00: Isotropic LANS-α equations for anistropic turbulent flow simulations 
  Kamran Mohseni, University of Colorado 
 
14:00 - 15:00: Wave and vortex motions in stably-stratified fluids 
  Geoff Spedding, University of Southern California 
 
15:00 - 15:30: Structure formation in stratified turbulence 


Yoshi Kimura, Nagoya University 
 
15:30 Workshop adjourns 
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* REVISED * 
BUS SCHEDULE 


 


Pick up time & location (address) Destination  (address) 


7:40 a.m. Monday (7/11/2005) 
College Inn 


1729 Athens Street 
Boulder 


NCAR 
Mesa Lab, Main Seminar Room 


1850 Table Mesa Drive 
Boulder 


5:45 p.m. Monday (7/11/2005) 
NCAR 


Mesa Lab 


College Inn 
1729 Athens Street 


Boulder 


8:40 a.m. Tuesday (7/12/2005) 
College Inn 


1729 Athens Street 
Boulder 


NCAR 
Mesa Lab, Main Seminar Room 


1850 Table Mesa Drive 
Boulder 


4:15 AND 6:00 p.m. Tuesday (7/12/2005) 
NCAR 


Mesa Lab 


College Inn 
1729 Athens Street 


Boulder 


8:40 a.m. Wednesday (7/13/2005) 
College Inn 


1729 Athens Street 
Boulder 


NCAR 
Mesa Lab, Main Seminar Room 


1850 Table Mesa Drive 
Boulder 


6:30 and 8:30 p.m. Wednesday (7/13/2005) 
NCAR 


Mesa Lab 


College Inn 
1729 Athens Street 


Boulder 


8:40 a.m. Thursday (7/14/2005) 
College Inn 


1729 Athens Street 
Boulder 


NCAR 
Mesa Lab, Main Seminar Room 


1850 Table Mesa Drive 
Boulder 


3:45 p.m. Thursday (7/14/2005) 
NCAR 


Mesa Lab 


College Inn 
1729 Athens Street 


Boulder 
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Waves and Vortices in Rotating Stratified Turbulence


Michael L. Waite1,2 and Peter Bartello1


1McGill University, Montréal (Québec) Canada
2ASP, National Center for Atmospheric Research from Fall 2005.


This presentation will focus on what can be learned from numerical simulations of the Boussinesq equa-
tion examined using the linear wave/vortex decomposition. The following limits of rotation and stable
stratification are examined:


1. Strong rotation and strong stratification
This limit was addressed by Bartello (1995). It is the simplest theoretically since all wave frequencies are
large and there is a disparity between the linear and nonlinear time scales for all of the wave vectors used
in the Fourier representation of the flow. In this case the classical resonance arguments, combined with the
detailed conservation of the quadratic approximation to the potential vorticity, yield a first-order decoupling
of the waves from the vortices. The vortical part of the flow is then governed by quasigeostrophic dynamics,
while the waves cascade downscale to the dissipation mainly via a catalytic interaction involving a vortex
mode. Three wave resonances may also be important, although this is difficult to check numerically.


2. Stratification dominated by vortical modes
At large geophysical scales, the linear decomposition corresponds to the familiar division into quasigeostrophic
and ageostrophic motion. As one moves downscale, however, Coriolis effects weaken and the dynamics change
considerably. The wide separation of vortical and wave time scales narrows (disappearing as the wavevector
becomes parallel with the kz axis), facilitating interactions and exchanges of energy between the two types
of motion.


The range of scales over which rotation is weak but stratification is strong corresponds to the atmospheric
mesoscale and oceanic submesoscale. Observations in the atmosphere and ocean suggest a certain universality
of the flow at these scales: energy spectra, for instance, are often found to be insensitive to geographical
location and season. Different theories have been proposed to account for these observations; however, the
underlying physics remain controversial.


Figure 1: The y-component of vorticity for a constant-y slice at a moderate Froude number.


In an attempt to improve understanding of the dynamics and interactions of vortical and wave motion,
Waite and Bartello (2004) performed a set of numerical simulations of an idealized, stably stratified fluid (here
we neglect rotation completely). Large-scale vortical modes are forced for a wide range of stratifications.







Energy is transferred to small scales and dissipated, and statistical stationarity is reached; the nature of
the flow depends greatly on the type of forcing and the degree of stratification. In this talk, a number of
time-averaged quantities will be presented, including energy spectra and transfer functions. The dependence
of these quantities on stratification, and their relation to different asymptotic theories, will be discussed.


With vortical forcing and strong stratification, the energy spectra are found to be quite different from
observations in the atmosphere and ocean. However, we argue that these results are consistent with the
limiting dynamics, which for vortical motion predicts decoupled layers of two-dimensional turbulence (see
the figure). The statistical mechanics of the inviscid truncated system are also in agreement with these
findings. We show that vertical decoupling breaks down at a scale of U/N where U is the RMS velocity and
N is the Brunt-Väisälä frequency, in agreement with a number of theoretical studies.


3. Stratification dominated by internal waves
Energy spectra in the atmosphere and ocean are frequently found to have the form N2 k−3


z , and are thought
to result from breaking internal gravity waves. However, stably stratified fluids can posses vortical motion
with potential vorticity in addition to internal waves. In the previous section we found that stratified
turbulence forced by vortical motion produces spectra which are very different from the observations. Here,
Waite and Bartello (2005a) present new simulations of stratified turbulence forced by large-scale internal
waves for a wide range of stratifications. The kz spectra are found to steepen with stratification; only under
very specific conditions is a slope near −3 obtained. Furthermore, the spectra are found to be sensitive to
both Reynolds number and to the presence of vortical energy. This latter point is a result of the catalytic
resonant transfer of wave energy in the presence of vortical modes, and is illustrated with the decomposition
of the wave energy transfer spectra.


4. Strong stratification at various rotations
In this section numerical simulations of stratified turbulence dominated by vortical motion (as in section 2
above) were modified as in Waite and Bartello (2005b) by adding rotation. The control simulation is one with
very strong stratification. Without rotation the flow can be described as very layered with characteristic
vertical scale U/N . As rotation is added and the Rossby number is decreased from infinity to O(0.1), a
transition takes place at a Rossby number near unity. For smaller Ro, the vertical scale ceases to be almost
independent of Ro and increases as fL/N , in agreement with quasigeostrophic theory. In this range the
decoupled dynamics of section 1 is recovered.


5. Discussion
In addition to a number of results concerning rotating stratified turbulence, we have learned a great deal
about the requirements for accurate numerical simulation of these dynamics. If there is time, the implications
for “realistic” models of atmosphere, oceans and rotating stratified astrophysical flows will be discussed.
Issues include the temporal resolution required to reproduce the selection of important interactions based on
resonance properties, the fact that subgridale parameterisations have to be different for wave and vortical
modes in certain limits, the required vertical resolution for a give horizontal resolution, etc.


———————————
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Unified Scaling Law for Local and Non-local Enstrophy
Transfers in Generalized Two-dimensional Turbulence


Takeshi Watanabe1 and Takahiro Iwayama2


1 Department of Mechanical Engineering, Applied Physics Program, Nagoya Institute of Technology,
Gokiso, Showa-ku, Nagoya 466-8555, Japan


2 Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan


We investigate the enstrophy inertial range of a family of 2d turbulent flows, so-called α-turbulence,
theoretically and numerically [1]. The governing equation of motion for α-turbulence is given by


∂tq + J(φ, q) = dS + dL + f, qk = −|k|αφk, (1)


where q is a scalar field convected by the velocity field u = −∇ × φez, φ being the stream function. The
α-turbulence is characterized by the relation between q and φ with a single parameter α. For some given
values of α, eq. (1) is reduced to the evolution equation for some well-known 2d turbulent systems [1, 2].


In the invisid and force-free cases, eq. (1) has the two quadratic positive invariants called the energy
Eα = −〈qφ/2〉 and the enstrophy Qα = 〈q2/2〉 =


∫ ∞
0 Qα(k)dk. In the past, theoretical and numerical studies


of α-turbulence in the enstrophy inertial range have been performed [2]. The enstrophy spectrum in the
enstrophy inertial range was theoretically derived to be Qα(k) ∼ k−(7−2α)/3 applying the Kraichnan-Leith-
Batchelor (KLB) theory to α-turbulence [2]. Although the KLB prediction is well agree with the results of
DNS for 0 < α < 2, it is not supported by them for α > 2, where Qα(k) ∼ k−1 was observed irrespective of
α. Thus the nature of transferring dynamics drastically changes at α = 2. Although Pierrehumbert et al.
and Schorghofer [2] pointed out the importance of the non-locality of the enstrophy transfer responsible for
the failure of KLB theory for α > 2 by invoking the idea of passive scalar transport, systematic derivation
of this “phase transition” at α = 2 based on the enstrophy transfer has been left unsolved problem.


We propose a unified form of the enstrophy spectrum for the local and non-local enstrophy transfers of
α-turbulence. We phenomenologically express the enstrophy transfer flux Λα(k) as follows,


Λα(k) = CαkQα(k)ωα(k), ωα(k) ≡


[∫ k


0


k′4−2α
Qα(k′)dk′


]1/2


, (2)


where ωα(k) is the effective rate of shear acting on k from its larger scales, Cα is a constant. Equation (2)
yields the following spectral form in the enstrophy inertial range, i.e. Λα(k) = ηα,


Qα(k) =
(


2
3C2


α


)1/3


η2/3
α k−(7−2α)/3[χ+


α (k)]−1/3, χ+
α (k) =


1
4 − 2α


[
1 − δ+


α


(
k1


k


)4−2α
]


, (3)


where ηα is the enstrophy dissipation rate, δ+
α ≡ 1 − (4 − 2α)χ+


α (k1) and k1 is the smallest wavenumber
satisfying eq. (2). One should notice that the function χ+


α (k) gives the large scale correction to the KLB
scaling. We consider an asymptotic scaling behavior of eq. (3) with k � k1. For α < 2, eq. (3) is reduced
to the KLB scaling because of χ+


α (k) = Const as k � k1. For α > 2, in contrast, Qα(k) ∼ k−1 is derived
from eq. (3), in which the correction term is significant for k � k1. The case α = 2 is just the log-corrected
enstrophy spectrum derived by Kraichnan, or recently reconsidered by Bowman [3]. These results precisely
explain the transition between the local and non-local transfers at α = 2.


In order to test the validity of a unified scaling law (3), we perform the comprehensive DNS of α-
turbulence. The detailed setup of DNS is described in our paper [1]. Figure 1 shows the behavior of
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Figure 1: Enstrophy spectra obtained by DNS for α =
1, 2, and 3. ku ≡ (ηα/εα)1/α is the ultraviolet cutoff
wavenumber.
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Figure 2: Variation of the accumulated contribution
to the enstrophy transfer flux againt s. k10 is almost
the center of enstrophy inertial range.


enstrophy spectra in the case for α = 1, 2 and 3. The scaling behavior of spectra changes into the less steep
one as α increases, which follows our unified scaling theory. We also numerically verify the validity of the
phenomenological expression (2) of the enstrophy transfer flux responsible for the derivation of the transition
of scaling behavior (figure is omitted).


Furthermore we discuss the nature of local and non-local enstrophy transfer of α-turbulence based on
the transferring dynamics. The behavior of triad transfer function T Q


α (k|l, m) is investigated from the DNS
data. Instead of evaluating T Q


α (k|l, m) directly, we compute its coarse-grained form, which is defined by


T Q
α (n|a, b) =


∑


kn≤|k|<kn+1


∑


la≤|l|<la+1


∑


mb≤|m|<mb+1


Sα(l,m)<〈(qkqlqm)∗〉δk+l+m,0 (4)


in the wavenumber space divided into the circular shells represented by kn = k0λ
n, la = l0λ


a and mb = m0λ
b


with (n, a, b) = 0, 1, · · · , Nc. Thus T Q
α (n|a, b) represents the enstrophy exchanges among three shells labeled


by (n, a, b). By using eq. (4), we evaluate the function Wα(s, n) defined by


Λα(n)
ηα


=
Nc∑


s=0


Wα(s, n) = − 1
ηα


n−1∑


n′=0


Nc∑


a=0


Nc∑


b=0


T Q
α (n′|a, b), (5)


where s indicates the scale disparity parameter defined by s ≡ max(n, a, b)−min(n, a, b). Wα(s, n) represents
the fractional contribution to the enstrophy transfer flux. Figure 2 shows the accumulated contribution to
Λα(n)/ηα defined by


∑s
s′=0 Wα(s′, n) with n = 10. It is found that the contribution by the local interaction


relatively glows as α decreases, in contrast, the non-local interaction dominates the enstrophy inertial range
as α increases. This is consistent with the physical picture for the local and non-local natures of α-turbulence
introduced in our unified scaling theory. Detailed results will be discussed in the presentation.


———————————
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Multiscalar Mixing in Kelvin-Helmholtz Billows


Bill Smyth
College of Oceanic and Atmospheric Sciences, Oregon State University


104 Ocean Admin. Bldg., Corvallis, OR 97330
smyth@coas.oregonstate.edu


Among the first coherent structures to be recognized were the long-lived vortices that arise in sheared
turbulence as a result of inflectional instability. This class of turbulence is a useful model for mixing events in
ocean, atmosphere, and engineering contexts. The coherent (i.e. nonturbulent) properties of these vortices
are actually responsible for driving highly efficient mixing.


This talk will focus on the example of Kelvin-Helmholtz (KH) billows in the ocean thermocline. I will
describe the action of billows in seawater that is stratified simultaneously by heat and salt. The large
disparity in the diffusivities of these two scalars adds a fascinating and potentially important aspect to the
physics of shear-driven turbulence.


When both temperature and salinity gradients favor gravitationally stable stratification (figure 1), the
difference in molecular diffusivities leads to differential diffusion, a tendency for the turbulent diffusivity
of heat to exceed that of salt. This effect is significant only at low Reynolds numbers, but that condition
characterizes much of the thermocline.


Figure 1: Pseudo-salinity field from DNS of breaking Kelvin-Helmholtz billows. Diffusivity is 10x that of salt,
1/10 that of heat. Red = fresher; blue = saltier. Homogeneous regions above and below the turbulent layer
are rendered transparent for clarity. Horizontal boundary conditions are periodic.


A much richer physics arises when net stratification is gravitationally stable, but the individual contri-
bution of either heat or salt is destabilizing (figure 2). Then, the difference in molecular diffusivities leads
to a number of interesting phenomena that go by the general name “double diffusion”. Double diffusive
mixing has been under investigation since the sixties, and is in some respects well understood; however,
the interaction between double diffusive mixing and shear-driven turbulent mixing has received relatively
little attention. This is a crucial issue because most regions of the ocean that are susceptible to the former
mechanism are also susceptible to the latter.







(a) (b)


Figure 2: Pseudo-salinity field from DNS of KH billows in fingering-unstable stratification (salt stratification
is gravitationally unstable). (a) Early evolution. Streamwise streaks are a hybrid secondary instability driven
by shear and salt fingering dynamics. (b) Later evolution. Signatures of KH instability, salt sheets and salt
fingering are visible.


I will describe a sequence of direct numerical simulations of breaking KH billows in a variety of ther-
mohaline stratification regimes. Due to memory limitations, salinity is represented by a ficticious scalar,
pseudo-salinity, having molecular diffusivity intermediate between those of heat and salt. The resulting
flows exhibit a complex combination of turbulence, gravity waves and double diffusive phenomena. When
the stratification is doubly stable, turbulent diffusivities may differ by up to a factor of two. When one or the
other contribution is unstable, double diffusive instability combines with shear instability to create entirely
new mechanisms for the transition to turbulence (figure 2).
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Vortices in a stratified layer with horizontal shear


Sutanu Sarkar and Sankar Basak


University of California at San Diego, La Jolla, CA 92093


Stratified horizontal shear flows involving small-scale processes, O(100m) or smaller, occur in geophysical,
environmental and engineering flows, for example, behind submerged seamounts, at the edges of energetic
ocean currents, coastal eddies, strait flows and behind self-propelled bodies. An example of fundamental
interest is a shear layer between two streams with a velocity difference, ∆U , and a horizontal separation,
δ. The effect of stratification, dρ/dz, on the evolution of such a shear layer with inflectional horizontal
(lateral) shear, S = dU/dy, is the subject of a recent numerical study [1] employing DNS of the Navier-
Stokes equations. The shear layer thickens with time, the mean centerline shear S decreases while N
remains constant, the generalized Richardson number Rib = N2/S2 progressively increases, and eventually
the flow is dominated by stratification. Remarkably rich dynamics is found: three-dimensional turbulence,
coherent vortices, intrusions and internal gravity waves. In the present contribution, we focus on the coherent
vortices: their three-dimensional structure, the coupling between buoyancy and vorticity responsible for their
dynamics, and their contribution to transport and mixing.


The dynamics of a high-Re stratified shear layer is remarkably different from a similar unstratified flow.
In the unstratified case, cores and interspersed braids, associated with the KH instability, are neither distinct
in a horizontal cut, Fig. 1(a), nor vertically coherent in a vertical cut, Fig. 1(b). Such behavior at long time
and large Re is similar to that reported by [7]. On the other hand, the horizontal cut of ωz in Fig. 2(a) of a
case with high N at similar time shows the formation of distinct core-braid strucures in spite of similar Re.
Stratification prevents vertical transport in the flow and the associated horizontal vorticity ωh, while the
vertical vorticity ωz is not directly affected. The selective weakening of ωh leads to the prominence of core
dynamics and the development of coherent vortices. Although Fig. 2(a) appears to be a typical snapshot of
two-dimensional turbulence, Fig. 2(b) shows that there is significant vertical variability in the vortex cores.
ωz organizes into a lattice comprising staggered, short cores connected by thin regions of dislocations. It is
also found that most of ωh is limited to the dislocations.


Fig. 3, a composite of ωz contour lines and the density field in color, shows that the spatial organization
of density and vorticity fields is related. The velocity fluctuations stir up the initial linearly-varying density
field to create density fluctuations concentrated in the vortex cores. Sections of vortex cores with a horizontal
density gradient are tilted through a baroclinic torque. The tilting brings local regions of adjacent vortex
cores closer, which are then able to pair locally. As a consequence, a network of quasi-vertical, truncated
vortex cores connected by inclined segments emerges. These inclined segments collapse due to gravity and
strain, with the former effect being increasing important when N is large.


The rms vertical velocity becomes progressively smaller between cases, becoming about 6 % of the rms
horizontal velocity. Thus, most of the kinetic energy is in quasi-horizontal motion as occurs typically when
strong stratification is imposed on grid turbulence [5, 3, 4], wakes [9] and Taylor-Green vortices [6]. These
authors find that, one, vertically thin vortices with large horizontal extent, so-called “pancake eddies”, are
formed and, two, most of the dissipation occurs in regions of strong vertical shear in the region between these
pancake eddies. In the shear layer considered here, although buoyancy leads to short vortex cores rather
than long, vertically-coherent KH rollers, the vortices do not have the aspect ratio of “pancakes”. However,
in agreement with the previous studies, we also find large vertical shear (equivalently, horizontal vorticity,
ωh) as well as large vertical density gradient localized to the dislocations between the truncated vortex cores.
Indeed, in the simulation with the largest value of N and final Rib ≃ 45, the vertical shear makes up 65 %
of the total turbulent dissipation ǫ and the vertical density gradient is responsible for 80 % of the density
dissipation. It is worth noting that stratified uniform shear flow, a configuration where coherent vortices are







not easily discernible, also shows a large contribution from fluctuating vertical shear [8]; when Rib = 3, the
contribution is about 50 % when the mean shear is vertical and 83 % when the mean shear is horizontal.


(a)


(b)


Figure 1: Vertical vorticity, |ωz|, in unstratified case.
Part (a) is a horizontal cut at z = 12.7 and (b) is
a vertical cut at y = 25.7, both taken from data at
t = 64.8.


(a)


(b)
Figure 2: Vertical vorticity, |ωz|, in a case with large
N . Part (a) and (b) are horizontal and vertical cuts,
respectively, same locations as in Fig. 1. t = 64.8
and Rib = 33.


Figure 3: Density perturbation field (red denotes heavier and blue lighter fluid) for case A5 with ωz contours
overlapped, center y plane at a late time, t = 79.8, when Rib = 45.
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We study the interaction of an isolated columnar (Oseen) vortex (coherent structure, CS) with imposed,
fine-scale turbulence through direct numerical simulation (DNS). The dynamics are distinct in two different
regions: the vortex core (large mean vorticity and weak mean strain), and the turbulent annulus (weak
vorticity and strong strain) enclosing the core.


The primary effect of the CS on initially homogeneous, fine-scale external turbulence is to tilt radial
vorticity (ωr) into the azimuthal component (ωθ) and stretch the vorticity azimuthally, resulting in the
formation of distinct, nearly-azimuthal vortexlets (threads) surrounding the core. While this effect is well
predicted by rapid distortion theory [1], DNS shows two important nonlinear effects: (i) adjacent threads
with parallel ωθ undergo pairing, resulting in the growth of thread size and circulation; and (ii) threads
with antiparallel ωθ form dipoles, which self-advect radially outwards from the column core—a process very
similar to colliding vortex rings. Transport of mean momentum via dipole advection leads to an overshoot
of CS’s mean circulation profile. This overshoot, if sufficiently large, enhances turbulence production. The
overshoot, although potentially a mechanism of turbulence sustenance, is seen to be not maintained because
of progressive cross-annihilation of threads. Consequently, turbulence undergoes monotonic decay, preventing
the attainment of any self-similar state—assumed in some turbulent vortex theories (e.g., [2]).


Turbulence is seen to have remarkably little effect in enhancing vortex decay – which proceeds at a nearly
viscous rate. This counter-intuitive phenomenon is the result of the dominance of wave motions in the vortex
core, which, though intense, generate insignificant Reynolds stress, necessary for acclerated decay. That is,
wave motions contribute large velocity cross-correlation of oscillating sign, but zero stress when averaged
over the oscillation time period. Velocity and pressure perturbations due to the external threads trigger
Kelvin waves in the CS core. The wave-like nature of core perturbations is revealed by applying helical wave
decomposition [3]. Core waves are seen to amplify (to levels exceeding turbulence intensities outside the
core!) even as the external turbulence decays, with the threads continually decaying. This core fluctuation
growth, which is missed by the extensively-studied turbulence modeling using solid-body rotation, indicates
resonant excitation of Kelvin waves by the threads; other turbulence growth mechanisms such as instability
due to axial flow and azimuthal shear-production are inoperative within the column’s core.


To understand the mechanism of core fluctuation amplification – significant because it can potentially lead
to vortex core transition, hence enhanced decay – we study the behavior of small-amplitude perturbations
to an isolated vortex within the framework of transient growth [4]: the temporary algebraic growth of
pertubations in a normal-mode-stable flow. Energetically “optimal” modes amplify over a wide range of
azimuthal wavenumbers m and axial wavenumbers k, and the amplification can be more than three orders-
of-magnitude even at moderate vortex Reynolds numbers Re (checked up to 2× 104). Transient growth can
be arbitrarily large in the inviscid limit. For given Re and k, axisymmetric (m=0) modes undergo the largest
volume-integrated energy growth, whereas maximum core energy growth occurs for bending waves (|m| = 1).
At fixed m and Re, growth decreases with increasing k, due to the damping effect of viscosity. At fixed m and
k, growth increases rapidly with Re – pointing to the significance of transient growth in high-Re practical
flows, such as the trailing vortex. Inviscid effects not only cause transient growth, but also its subsequent
arrest. There are two distinct mechanisms for growth. First, two-dimensional perturbations amplify because
the streamlines have ‘positive tilt’, contributing uv > 0 stress necessary for growth; here u and v are the
radial and azimuthal velocity perturbations, respectively. Second, three-dimensional perturbations grow







through azimuthal stretching of continously winding spiral vortex filaments. Decay in both cases is due to
the differential advection – of axial vorticity by the mean swirl – transforming the perturbation streamlines
to predominantly ‘negative tilt’, producing uv<0 stress. Transient growth mechanism is explained in terms
of the distinct effects of the strain and vorticity components of the mean flow, which play counteractive
roles. While strain amplifies energy, vorticity limits transient growth by inducing wave motions, which
deplete radial vorticity by vortex line coiling, i.e. by the tilting of radial vorticity into axial and azimuthal
components. Since the strain-to-vorticity ratio varies with radius in the vortex, the competition between
strain and vorticity selects a preferred radius of localization of an ‘optimal perturbation’. The optimal
bending waves are localized close to the vortex column where a vorticity perturbation external to the core
can resonantly excite vortex core waves. This leads to substantial growth of core fluctuation energy and,
likely, to core transition to turbulence. Such resonant growth seems to be the mechanism for the appearance
of bending waves in a vortex in a turbulent field.


The nonlinear evolution of optimal transient growth perturbations to a stable vortex column – obtained
from linear analysis – is studied through direct numerical simulation (DNS). Evolutions of both individual
modes (evolving in isolation) and random superpositions of several modes are considered. DNS shows
that with increasing initial perturbation amplitude, the maximum energy amplification as well as the time
period of transient growth are reduced from those for infinitesimal perturbations. Thus nonlinear effects
set an ‘optimal’ initial amplitude of perturbations that maximizes the peak fluctuation intensity at a later
time. Remarkably, even a single bending wave optimal mode captures the key features of vortex-turbulence
interaction: growth of strong core perturbations, mean circulation overshoot, and dipole formation and
radial spread of turbulence. Core fluctuation intensities can attain large values even for moderate initial
perturbation (∼ 5%). These results suggest possible transition of “stable” vortices through interaction with
ambient turbulence in high-Re practical flows.
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Figure 1: Iso-enstrophy snapshot
from [1]. Pure rotation
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Figure 2: Solid lines: Angle-
dependent energy spectrum from
[1], pure rotation. Dotted line:
Isotropic spectrum
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Figure 3: Sketch of spectral an-
gular energy drain (top) linked to
structure formation (bottom), from
[3]. Stratification (left) and rota-
tion (right)


The starting point of our numerical and theoretical studies is the set of Navier-Stokes equations with Boussi-
nesq approximation for velocity u and buoyancy scalar b.


(∂t − ν∇2)u = −u · ∇u−∇p + bn− fn× u , (1)
(∂t − κ∇2)θ = −N2n · u− u · ∇b . (2)


The Coriolis parameter f is twice the angular velocity of the frame in the n direction (vertical) and N is the
Brunt-Vaisala frequency related to vertical stable stratification. Only the case with ν = κ is considered here.
Recent 5123 DNS [1] of the equations above have confirmed the link (e.g. fig. 3) of oriented structures (e.g.
fig. 1) to typical angle-dependent spectra (e.g. fig. 2, k is the wavevector k modulus with cos θ = k · n/k),
which give the finest anisotropic (axisymmetry without mirror symmetry) description for two-point second-
order statistics. In turn, anisotropic spectra can be obtained by statistical theory, in which the wave-
propagator (or linear Green’s function denoted G(k, t, t′) here as in [1, 2, 3, 4]) is incorporated in Quasi-
Normal Markovian (QNM) closure, intrinsic (Eulerian Wave-Turbulence theory) [4] or modelled (EDQNM-
type) [2, 3]. Comparisons between high resolution DNS results and statistical theory give more and more
evidence that creation of structures can be explained by isotropy breaking via G-products in statistical
multi-point correlations. This explanation can be proposed as an alternative to stability-like arguments,
which were alledged in connection with very low resolution LES (e.g. [5]). In order to avoid biases, our DNS
or QNM approaches are started with purely isotropic initial data, no forcing is used, and angle-dependence is
not parameterized by low-order spherical harmonics expansions (as in [6]) in anisotropic statistical theories.
Recent results about cigar and pancake structures: in flows dominated by rotation, both DNS and
QNM-type studies [2, 4] show concentration of spectral energy towards horizontal wave-vectors; this effect







is consistent with partial two-dimensionalisation limited to smallest scales [4], as illustrated by fig. 2, and
rise of cigar-like structures (fig. 1., fig. 3 right). In flow dominated by stratification, angle dependence
is restricted to the toroidal (or ‘vortex’) component of energy, with concentration towards vertical wave-
vectors [1, 3]; this effect is consistent with horizontal layering (rise of pancake structures, fig. 3 left). The
poloidal component, affected by gravity waves, exhibits a clear k−2 law in DNS [1]. Studies are in progress
to confront our angle of attack with the one based on the concept of zig-zag instability [7]. In the same way,
the Quasi-Geostrophic model [6] has to be revisited for a large range of f/N ratios.
Cyclone/anticyclone asymmetry in flows dominated by rotation: Several studies address the
asymetry towards cyclonic vorticity. This is also illustrated by fig. 1, with cyclonic vorticity in grey and
anticyclonic one in black. Second order statistics cannot give information about this issue, but third-order
statistics are relevant. For instance, single-point triple vorticity correlations in the axisymmetric case involve
only two key correlations 〈ω3


3〉 and 〈ω2ω3〉 = 〈ωiωiω3〉 as follows
〈ωiωjωk〉 = 1


2 〈ω
3
3〉 (5ninjnk − δijnk − δiknj − δjkni) + 1


2 〈ω
2ω3〉 (δijnk + δiknj + δjkni − 3ninjnk) in which


the index 3 reffers to the (axial) vertical direction (ni = δi3 without lack of generality). A positive value
indicates cyclonic dominance for both terms. Three-point triple correlations with their most refined axisym-
metric structure can be calculated in our QNM models [2, 4], with or without transient terms. In addition,
there exist hints [8] that pure linear (transient) evolution can build positive vorticity skewness. Accordingly,
〈ω3


3〉 is evaluated by pure linear theory (so-called RDT) from the distribution of initial vorticity by
〈ω3


3〉(t) =
∫


R9 G3i(q, t, 0)G3j(k, t, 0)G3k(p, t, 0)〈ω̂i(q, 0)ω̂j(k, 0)ω̂k(p, 0)〉d3kd3pd3q in which the complete
initial distribution of triple correlations has to be known in terms of triads k + p + q = 0 in Fourier space
(the .̂.. denotes a 3D Fourier transform), or equivalently the three-point triple correlations in physical space.
Using (isotropic) EDQNM only for this (initialization) purpose, a complete linear solution is found


< ω3
3 > (t) =


∑


s,s′,s′′=±1


∫


R6
exp[ı(sσk + s′σp + s′′σq)t + ı(sλ + s′λ′ + s′′λ′′)]


sin θk sin θp sin θqτkpqE(q)[Ass′s′′(k, p, q)E(k)− Bss′s′′(k, p, q)E(p)]d3kd3p (3)


in terms of the initial energy spectrum E(k). σk = f cos θk is the dispersion frequency of inertial waves, so
that eıσkt, e−ıσkt and 1 are the eigenvalues of the linear Green’s function Gij(k, t, 0). τkpq is the classical
time-scale resulting from eddy damping; all other terms are geometric factors which are defined in [2, 4].


A three-fold quantitative comparison for vorticity statistics is in progress between the theoretical model
above, 5123 DNS [1], and recent relevant experimental results [9].
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The role of no-slip boundaries as vorticity sources in two-dimensional (2D) turbulence on bounded domains
will be addressed. It is well-known that 2D turbulence is characterised by the inverse energy cascade, i.e.
by a spectral flux of kinetic energy to smaller wave numbers. This applies in particular to the case of statis-
tically steady forced flows. In the case of decaying turbulence - in which the flow is initialised at t = 0 and
subsequently allowed to evolve - the so-called selective decay mechanism also plays a role, according to which
the flow structures at smaller length scales decay faster than those at larger scales. In fact, this mechanism
then competes with the inverse energy cascade. In either case, the flow has a tendency to form larger,
coherent vortex structures, a phenomenon observed in several numerical studies of decaying turbulence (e.g.,
Refs. [1, 2]).
In a numerical simulation of decaying 2D turbulence on a bounded, circular domain a completely different
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Figure 1: Vorticity contour plots of decaying turbulence with no-slip and with periodic boundary conditions,
respectively. The last two panels show the maximum enstrophy Ω and palinstrophy P during vorticity-wall
interactions as function of the Reynolds number (based on the size and velocity of the vortex). For large
Reynolds numbers, Re > 10000, the following relations hold: Ω ∝


√
Re and P ∝ Re


√
Re.


flow behaviour from that on a double-periodic domain was observed [3]; details of the flow evolution were
found to depend on the no-slip boundary condition. Experiments on decaying turbulence in density-stratified
fluids in circular containers confirmed this decay process [4]. In a numerical study of decaying turbulence
on a square domain with solid walls, similar effects of the boundaries have been found. The walls play
an active role in the flow evolution, namely as sources of filaments of high-amplitude vorticity (see Figure
1). Whenever a vortex structure approaches a solid no-slip wall, a boundary layer is formed that contains
opposite-signed vorticity. This boundary layer is partially ’scraped off’ from the wall in the form of a long
vorticity filament that may be wrapped around the vortex or otherwise be advected into the interior of the
flow domain. This process of vorticity filament production at the no-slip walls continues even during the
later stages of the flow evolution.
While decaying turbulence on a double-periodic square domain eventually becomes organised in the form of
a combination of two cells of positive and negative circulations [5], the ’final state’ of decaying turbulence on







a square domain with no-slip boundaries consists of a single large central cell with either positive or negative
circulation, surrounded by a shielding ring of opposite vorticity (such that the total circulation of the flow
is zero, as dictated by the no-slip boundary condition). This long-time behaviour has been observed both in
laboratory experiments and in high-Reynolds number simulations of decaying 2D turbulence.
A remarkable observation was that in many cases the total angular momentum L(t) of the flow (being
randomly initialized, with L(t = 0) ' 0) shows a sudden change to non-zero values - a feature termed
’spontaneous spin-up’. This spin-up of the fluid is directly associated with the self-organization of the flow
into a single larger vortex structure. In the next stage of the flow evolution, the absolute angular momentum
|L(t)| shows a very slow decay to zero for very late times. It is important to note that the no-slip boundary
condition is a prerequisite for the spin-up. Also, the square domain geometry is important, spin-up being
virtually absent on a circular domain. Obviously, the change of the total angular momentum during the
spontaneous spin-up is connected with the action of forces at the domain boundaries. Numerical simulations
have revealed that - for the case of a square geometry - the contribution of the inviscid normal stress (i.e.,
the pressure) dominates the viscous shear and normal stresses.
In recent direct numerical simulations of stochastically forced 2D turbulent flow on a square domain with
no-slip boundary conditions also spontaneous spin-up behaviour has been observed, although remarkably
different from the decaying case (see Figure 2). In the forced turbulence simulations one observes several
consecutive events of rapid increase and decrease of |L(t)|, often with sign reversal of L(t) between neigh-
bouring peaks in |L(t)| [6].
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Figure 2: The normalized angular momentum of forced 2D turbulence as function of (dimensionless) time in
a square domain with no-slip walls (left panel). The break-down and subsequent build-up of the large central
vortex is illustrated in the right panels (for t=800, 900 and 1000, respectively).
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The effects of stable stratification on the dynamics of both counter-rotating and co-rotating vortex pairs
are studied using direct numerical simulations. Here, the vortices are oriented horizontally in a vertically
stratified fluid. In particular, we are interested in the three-dimensional short-wavelength elliptic instability
that may occur in these flows and the two-dimensional dynamics that influence its development. The
instability is associated with the ellipticity of the streamlines due to the strain induced by one vortex on
the other and results in an antisymmetric sinusoidal deformation of the vortex cores (figure 3a). Recent
work by Le Dizes and Laporte [1] provides a generalized stability analysis which considers both counter- and
co-rotating vortex pairs in unstratified fluid. At present, there are no theoretical results for the stratified
flows. Here, we present simulation results indicating some of the effects of stratification. Depending on the
Froude number, defined as the ratio of the buoyancy timescale to the convective timescale, and the stage of
evolution, stratification effects may significantly alter the behavior of these flows.
The simulations are initialized by a superposition of two Lamb-Oseen vortices (with circulation Γo, core


radius, ao, and separated by a distance, bo) and a three-dimensional random perturbation velocity field. The
initial density field corresponds to uniform stable stratification characterized by the buoyancy frequency, N
(N2 = −gdρ/dz/ρo). The relevant parameters are the Reynolds number, ReΓ = Γo/ν (counter-rotating:
ReΓ = 2400; co-rotating: ReΓ = 5000), Froude number, Fr = Γo/(2πbo


2N), and vortex aspect ratio, a/b.
Details of the simulations of the counter-rotating vortices are provided in Nomura et al [3].
In the case of the counter-rotating vortex pair, the vortices descend transporting lighter fluid into regions


of heavier fluid. Axial vorticity of opposite sign is generated through baroclinic torque (figure 1). In the case
of weak to moderate stratification (∞ < Fr ≤ 2), the elliptic instability develops qualitatively in the same
manner as in unstratified fluid (figure 3c). As indicated in the figure, the primary effect of stratification
is to reduce the vortex separation distance which enhances the mutually induced strain. Consequently,
the instability has an earlier onset and higher growth rate with increasing stratification. The behavior is
essentially described by linear stability theory for unstratified flow if the varying separation distance is taken
into account. On the other hand, the final breakdown and decay of the flow (figure 3b) may be greatly
modified by stratification since buoyancy effects eventually emerge after sufficient time has elapsed. The
decay is enhanced due to additional mechanisms not present in unstratified flow. Secondary vertical vortex
structures form between the primary vortices promoting transverse mixing (figure 3d). Detrainment of fluid
from the primary vortices by the generated baroclinic torque also contributes to the more rapid breakdown
of the flow. For strongly stratified flow, Fr ∼ 1, the time scales of the instability and stratification are
comparable and the associated processes interact significantly. The instability does not develop in the same
manner or to the extent as in the weak to moderately stratified flows. Strong baroclinic torque brings the
primary vortices together. A more complex radial structure of the instability is observed; the expected
two-lobe structure (figure 4a) occurs together with what is nearly a four-lobe structure (figure 4b).
In the case of the co-rotating vortex pair, the vortices rotate about each other. For the parameter


range considered, the two-dimensional merging process is a dominant aspect of the flow evolution. In
unstratified flow, analysis in the co-rotating reference frame reveals the relative motion which results in the
formation of vortex filaments [2]. These filaments cause the vortex centroids to move towards each other
thereby establishing the merging process. For flows with sufficiently low Fr, merging occurs sooner. This is
attributed to the secondary flow associated with baroclinic torque which enhances the motion of the vortices
towards each other (figure 2). Details of the two-dimensional effects of stratification are presented in an







accompanying poster [4]. Results of the three-dimensional simulations indicate that for sufficiently high ReΓ
and high to moderate Fr, the elliptic instability occurs (figure 4c shows two-lobe signature). However, due
to the earlier onset of merging, the instability does not develop to the extent of the unstratified flow. Details
of the competing processes will be presented.
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Figure 1: Axial vorticity in x−z (vertical) plane:
counter-rotating pair, Fr = 2


Figure 2: Axial vorticity in x−z (vertical) plane:
co-rotating pair, Fr = 5


(a) Fr = ∞, t∗ = 13.5 (b) Fr = ∞, t∗ = 16.5 (c) Fr = 2, t∗ = 6.0 (d) Fr = 2, t∗ = 7.5


Figure 3: Three-dimensional visualizations of the elliptic instability and subsequent decay of flow for counter-
rotating vortex pair: (a),(b) Fr =∞, (c),(d) Fr = 2.
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Figure 4: Contours of axial velocity for (a),(b) counter-rotating, Fr = 1, t∗ = 3.75, (c) co-rotating, Fr = 5.


References


[1] Le Dizes, S. and Laporte, F., J. Fluid Mech. 2002.


[2] Melander, M.V. and Zabusky, N.J. and McWilliams, J.C., J. Fluid Mech. 1998.


[3] Nomura, K. K., Tsutsui, H., Mahoney, D., Rottman, J., Submitted to J. Fluid Mech.


[4] Brandt, L. K. and Nomura, K. K., (poster presention) GTP Workshop 2005.







GTP Workshop on
Coherent Structures in Atmosphere and Ocean
at NCAR, 11-14 July 2005, Boulder, CO, USA


The persistence of balance in rotating stratified turbulence
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Rotating, stably-stratified geophysical flows in the atmosphere and oceans often exhibit a near “balanced”
evolution controlled by the advection of a single scalar quantity, the “potential vorticity” (PV). Additional
degrees of freedom, in the form of inertia–gravity waves or “unbalanced” motions (analogous to surface water
waves), tend to be only weakly excited, and moreover only weakly interact with the balanced motions.


This state of affairs has been exploited practically in numerical weather prediction for the past 50 years,
mainly in initialisation and data assimilation, i.e. in preparing input data for numerical models. Imposing
some sort of balance on the input data tends to improve forecasts, since uncertainties in the input data may
project strongly on unbalanced motions.


While balance has been a well-recognised feature of geophysical flows, it lacks any precise mathematical
definition. There is no rigorous separation of a general nonlinear fluid flow into its balanced and unbalanced
parts, even under the conditions when some sort of balance is expected to hold. Normally, these conditions
are small Rossby number R � 1, i.e. rapid background rotation, and small Froude number F � 1, i.e. strong
stratification. At leading order in these parameters (taking F ∼ R � 1), we have the simplest balance
model, the “quasi-geostrophic” (QG) model. This model makes use of both hydrostatic and geostrophic
balance (obtained by neglecting the fluid acceleration Du/Dt in the rotating reference frame). Going higher
in the asymptotic expansion, beyond QG, one is suddenly faced with an infinite multiplicity of balanced
models depending on the precise “balance conditions” imposed (cf. [5]). Further ambiguity may arise from
approximating the mathematical definition of potential vorticity (PV), whose exact form is nonlinear. The
QG model uses linearised PV.


This extreme ambiguity in the definition of balance makes any study of balance problematic. How can
balance be quantified? To remove some of this ambiguity, a new procedure, called the “Optimal PV” (OPV)
balance procedure [7], was developed which avoids specifying balance conditions. Instead, the procedure lets
the fluid motion find its own balance using the full governing equations. To obtain “balance”, or perhaps
more correctly to minimise imbalance, the PV carried by each material fluid particle is varied in “time” over
a prescribed ramp period TD, starting from a state of rest. As the flow spins up, it is found to generate
minimal inertia–gravity wave (IGW) activity for TD exceeding about 3 inertial periods Tip = 2π/f [2], where
f is the Coriolis frequency (twice the local background rotation rate). As the fluid particle configuration is
not known at the beginning of the ramp period, the procedure must find it iteratively through a convergent
cycle of forward and backward integrations.


This procedure was developed to quantify PV-controlled balanced motions, and the residual unbalanced
motions, in complex rotating stratified flows. Over a wide class of flows, including turbulence at O(1) values
of R and F, and at essentially infinite Reynolds number, balance is found to be a hugely dominant feature
of the fluid motion. Flows starting from a state of near balance remain near balance — this is called the
persistence of balance [2]. IGWs generated during the course of the flow evolution are exceedingly weak,
many orders of magnitude weaker than the balanced vortical motions [8].


This finding is particularly surprising given that the flows considered contain sharp gradients of PV,
indeed discontinuities in PV. These discontinuities give rise to algebraic tails in frequency spectra, thereby
potentially exciting IGWs at ‘high’ frequencies f < ω < N , where N is the buoyancy frequency (typically
N � f). Remarkably, after separating flow fields into their balanced and imbalanced parts, the balanced
part of fields, even those as sensitive as the vertical velocity, often dominates the imbalance part even for







f < ω < N . In other words, balanced motions can dominate the high frequency spectra. That balanced
motions are exclusively slow motions is a myth.


A problem with OPV balance is that it cannot be used as a balanced model, i.e. it is diagnostic only. By
contrast, QG is a robust, efficient model — only it lacks accuracy. While simulations of QG turbulence remain
qualitatively similar to those of turbulence at finite R and F, they lack important features, e.g. they cannot
model the difference between cyclonic and anticyclonic vortices arising from centripetal acceleration [3]. Yet,
the QG model has long been useful in diagnosing second-order “ageostrophic” fields like the vertical velocity.
Using a novel recasting of the non-hydrostatic primitive equations (under the Boussinesq approximation) in
which PV conservation is explicit [1], we have developed a new, highly-accurate procedure to diagnose all the
dynamical fields from the PV alone. The resulting balance, called “Extended Quasi-Geostrophic” (EQG)
balance [4], is found to be closely similar to OPV balance up to O(1) values of R and F in simulations of
rotating stratified turbulence. That is, the imbalance as measured by the differences between EQG, OPV
and the full dynamics is closely similar for all flow fields.


The (weak) imbalance, however, has virtually no impact on the dominantly balanced flow evolution [2].
This, and the close agreement between EQG and OPV balance, suggests that EQG could be used effectively
as a balanced model for simulating the balanced flow evolution. Indeed, in simulations of turbulence, we
have found exceptional agreement between the EQG model and the full dynamics, even after long integration
periods (many tens of inertial periods) [4].


Of course, EQG balance is not unique. It imposes balance by setting the ageostrophic horizontal vorticity
tendency to zero in the recast equations of motion [1]. This allows one to recover second-order fields
conveniently. A similar procedure was introduced in [6], except starting from the hydrostatic primitive
equations. Another, more important difference is that EQG balance does not approximate the definition of
PV, whereas the procedure in [6] truncates PV at second order in R and F. This truncation simplifies the
“PV inversion” procedure considerably, resulting in a series of linear elliptic problems. It is also formally of
the same order of accuracy as the balance conditions imposed. However, approximating the definition of PV
has a significant impact of the accuracy of the balance. This was found while developing EQG balance, when
we originally also approximated PV. Keeping the full definition of PV requires the solution of a nonlinear
Monge-Ampère equation for the horizontally non-divergent part of the flow [1]. This is by far the dominant
part (the only part retained in the QG model), and apparently its accuracy is crucial to balance.


———————————
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The existence of packets of internal solitary waves (ISW) in shallow, stratified bodies of water (coastal ocean,
estuaries and lakes) is well-established and some of the processes leading to their formation in shallow seas
are now in hand. Although recent field observations [1, 2] have revealed a direct connection between the
passage of ISW and increased levels of bottom turbulence, mixing and resuspension, comparatively little is
known about the physical mechanisms underlying the benthic stimulation induced by ISW.


In this work, the time-dependent boundary layer induced by a weakly non-linear ISW in shallow water
is examined through Direct Numerical Simulation (DNS). The focus is on ISW of depression due the preva-
lent perception that such waves are responsible for interfacial, but not benthic mixing, on account of their
proximity to the free surface. The mean density field corresponds to that observed in the coastal ocean and
lakes where the lower fraction of the water column is subject to the stabilizing effect of a diffuse stratification.
Sufficient resolution of the “inviscid” dynamics of the boundary layer is ensured through use of a Legendre
spectral multidomain discretization scheme in the vertical direction. At higher Reynolds numbers, where
the simulations become under-resolved at the resolutions considered, spectral accuracy and stability at the
scales of physical interest are preserved through use of a penalty scheme in the vertical and explicit spectral
filtering [3]. Thus, a highly accurate description of the qualitative dynamics of the wave-induced global
instability is possible and finescale physical mechanisms critical to the appearance of this instability are
not smeared out by the high artificial dissipation inherent in lower order finite difference schemes. Results
indicate that, for a wave amplitude exceeding a critical value, the global instability occurs in regions near
the bottom boundary where the wave-induced current diminishes below a local extremum and produces
an adverse pressure gradient. The structure of the associated separation bubble is modified through the
establishment of coherent and synchronous dynamics characterized by a periodic shedding of coherent vortex
structures. (figure 1) which is accompanied by elevated levels of bottom shear stress (figure 2a). Although
details of the vortex shedding depend on the particular wave forcing involved, these vortical structures al-
ways ascend high into the water column. All findings suggest that this global instability is operative at
oceanically/limnologically relevant governing parameter values (figure 2b) and is a potent mechanism for
benthic turbulence, mixing and possible sediment resuspension in shallow waters, presumably even more
intense than the nominal turbulent boundary layer.
———————————
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Figure 1: Visualization of global instability of mode-1 solitary wave of depression at ReW = C0H/ν2× 104


(left column) and 105 (right column): view of lower right quarter of computational domain. C0 is the
limiting long wave phase velocity and H is the depth of the waveguide. The wave propagates from right to
left. Total density isopycnals (black line contours) vs. perturbation vorticity (colored contours).
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Figure 2: (a) Bottom shear stress ∂ũ/∂z sampled at z = 0 in wave “footprint” for ReW = 2 × 104,
supercritical amplitude α0 = 0.55 solitary wave of depression. Data sampled prior, at and after onset of
global instability. (b) Critical non-dimensional wave amplitude α0cr as a function of ReW for mode-1 solitary
wave of depression. The solid line represents the exponential best-fit function: α0cr = 0.5 · (ReW /104)−0.12


. ISW in the ocean are commonly observed to have values of ReW in the range [105, 107].
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Turbulence is dominated by nonlinear dynamics, leading to multiscale behaviour, self-organization into
coherent vortices and generic randomness. The number of active spatial and temporal scales involved in-
creases with the Reynolds number, which results in a prohibitive computational cost. We will analyze
solutions of the Navier-Stokes equation, integrated with a pseudo-spectral code, for 2D and 3D flows in a
periodic domain at different Reynolds numbers Rλ, based on the Taylor microscale. Since the motion of
the coherent vortices is translation and rotation invariant, the turbulent fields are statistically homogeneous
and isotropic. When the Reynolds number increases, the small scale contribution becomes more and more
localized, in both space and time, and therefore turbulence becomes more and more intermittent. To benefit
from this property, a suitable representation should reflect the lacunarity of the small scale nonlinear activ-
ity in both space and time. This is the reason why we have proposed to use the wavelet representation to
analyze, model and compute the dynamics of turbulent flows.


We have designed a wavelet-based method [1, 2, 3] which decomposes each flow realization into two
orthogonal components: the coherent vortices resulting from the nonlinear term of Navier-Stokes equation,
whose statistical behaviour is non-Gaussian and long-range correlated, and the incoherent background flow
corresponding to the linear dissipation term, whose statistical behaviour is quasi-Gaussian and decorrelated.
In this talk we will show that these components correspond in wavelet space to two simply connected domains.
We will visualize the time evolution of the interface separating them in order to study the transfers associated
to the turbulent flow dynamics. We will apply this method to experimental and numerical datasets of 2D
and 3D turbulent flows (see as example Figures 1, 2, 3).


The existence of such an interface in wavelet space is the basis of the CVS (Coherent Vortex Simulation)
method [1, 2, 3], which computes the time evolution of turbulent flows with a reduced number of wavelet
modes corresponding to the coherent vortices only. CVS combines a nonlinear filtering of the solution at
time step t, which gives the interface in wavelet space, with the addition of the wavelet coefficients adjacent
to this interface, which corresponds to dealiasing and defines the security zone, in order to compute the flow
at time step (t + 1). The principle of the CVS method is to retain the nonlinear activity at all active scales,
and model the linear activity which is also multiscale, being noise-like, but presents a different statistical
behaviour than the coherent vortices.
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Figure 1: Modulus of the total vorticity.
Zoom onto a subcube 643 from a DNS at resolution 20483, corresponding to Rλ = 732,
computed on the Earth Simulator by the group of Prof. Yukio Kaneda, Nagoya University, Japan.


Figure 2: Modulus of the coherent vorticity.
It corresponds to 2.6% of the wavelet modes


and contains 80% of the enstrophy.


Figure 3: Modulus of the incoherent vorticity.
It corresponds to 97.4% of the wavelet modes


and contains 20% of the enstrophy.
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In recent years the classical Rayleigh-Taylor (RT) instability [1] has been generalized to a consideration of
accelerated inhomogeneous flows [2]. The most common example of this generalization is the Richtmyer-
Meshkov (RM) flow, where a planar shock wave strikes a weakly perturbed density interface. These config-
urations are important in geophysics, astrophysics, high-energy density physics and finally the technology
of laser-matter interactions. The geophysical application is to strongly breaking and plunging waves; the
astrophysical application is to supernovae and planetary nebulae where blast waves and strong winds interact
with interstellar matter in the cosmos. The last two are the focus of physicists who are concerned with the
attempt to ignite a fusion reaction in a DT pellet configuration by driving the environment of the pellet with
a multitude of laser beams .


In the RM flow environment, the constant acceleration of the classical RT configuration is replaced by an
impulse. Experiments by J. Jacobs and colleagues will be discussed. In both cases vorticity or circulation is
deposited on the interfacial gradient domain thru the baroclinic process [3], [4], [5]. An important process
after the shock has passed is the density gradient intensification of the interfacial domain due to stretching
by nearby compact vortex domains. [The RT and RM problems are ill-posed mathematically after a finite
time if one assumes the density jump is a mathematical discontinuity]. Zabusky and colleagues have also
shown [6], [7] that the acceleration or pressure gradient arising from these nearby vortex clusters can also
deposit new vorticity on high density gradient domains through baroclinic processes which drive the subse-
quent turbulence evolution. The vortex paradigm will be used to interpret recent 3D molecular dynamics
simulations of RT [9].


———————————
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The discovery of coherent structures (CS), which are defined as regular well-defined vortex patterns, in
unbounded turbulent shear layers by Brown & Roshko (1974 J. Fluid Mech., 64, 775-816) galvanized the
production of vast amounts of literature on this topic. Coherent vortices can be formed by many additional
mechanisms, for example, by the impartation of a momentum ’pulse’ into a fluid (Sozou, J. Fluid Mech., 91,
541-546, 1979) or by an inverse energy cascade or instabilities of 2-D flows (Jirka, G.H. 2001 J. Hydraulic
Res., 39, 567-573). CS are of two main categories, characterized by their streamwise lengths scale λ and
fluid depth H: the two-dimensional CS with λ/H > 1, and the three-dimensional CS with λ/H < 1. The
former, which in reality is only approximately 2D, are related to the dynamics of the entire column while
3DCS are more local and somewhat ephemeral in nature. Striking signatures that 2DCS produce on the
free surface due to property contrasts are observable by remote sensing techniques. While 3DCS have been
studied extensively in engineering fluid dynamics, literature on 2DCS, particularly for the case of bottom-
friction dominated flows, is relatively sparse. 3DCS have been classified by Prandtl (1952: Essentials of
fluid dynamics. Blackie), and Figure 1 shows an extension of this classification to include some 2-D flows.


(a) (b) (c)


(d) (e) (f)


W ake in a shallow layer Shallow water jet (Re = 104);


River flow into a lake (Re = 107)


(g) (h) (i)


Figure 1: Extension of classical Prandtl’s classification of 3DCS (a-e) to include 2DCS (f-i).







In the presence of stratification and rotation, some additional complexities arise and substantial modifications
occur in CS morphology. Researchers in the Environmental Fluid Dynamics Program at Arizona State
University have been studying many types of CS found in natural flows, and selected results of their work
will be the emphasis of this presentation. Of particular interest are the following:
Coherent Structures in Stably Stratified Mixing Layers: Mixing layer flows are ubiquitous in nature,
for example, in thermal circulation flows, upper atmospheric jet streams, equatorial jets, the upper ocean
mixing layer and flows in atmospheric inversion layers. Laboratory, field and numerical computations of these
flows clearly shed light on the formation of 3DCS, which subsequently collapse due to stratification to form
large-scale horizontal flows resembling 2DCS. Measurements show that CS in such cases contribute to en-
hanced transfer of momentum and scalar quantities. Improved parameterizations based on CS contributions
have yielded improved predictions in atmospheric meso-scale models such as MM-5 and RAMS.
Coherent Structures in Stratified and Rotating Jets: Much of the CS work in stratified flows has
been performed using squirted (pulsed) jets, which act as a momentum source. The observations show that
the turbulent blobs of fluid so-created first expand as in homogeneous fluids, but collapse somewhat abruptly
upon reaching a maximum size to form quasi-2D coherent vortices. The growth rate of turbulent patches,
turbulence within and the dynamics of ensuing dipole-like structures will be discussed in the presentation.
When rotation is present, either the jet deflects, forming an anticyclonic spiral monopole or propagates in
the direction of injection forming dipoles, but the structure of each of these types depends on the system
parameters such as the Reynolds number and the stratification parameter.
Coherent Structures in Stratified Wakes: Many laboratory and numerical works have been reported on
turbulent momentum wakes of bodies towed in stratified fluids, which act as momentum sources and generate
CS. In a practical context, perhaps the most interesting is momentum-less wakes of steady self-propelled
bodies. When such bodies maneuver, momentum in deposited and CS can be formed (e.g., acceleration or
deceleration or making sudden turns. Our previous small scale experiments with Reynolds numbers Re ∼
1000 [Voropayev et al., Phys. Fluids, 1999, 11(6), 1682-1683] show that in a stratified fluid maneuvering
indeed can lead to the formation of large (compared to the generation source) vortex structures, which
have different morphology compared to those produced in the late wake of a steadily moving self-propelled
body. Recently, these experiments have been extended to include large Reynolds numbers on the order Re
= 50,000. Different body maneuvers have been reproduced in the experiments, including starting motion
from rest, nearly steady motion with acceleration, steady motion, and motion along the arc. The results
reveal how CS in such wakes grows in time and space as well as the influence of internal waves on associated
vortex dynamics.
Coherent Structures in Geophysical Convection: During deep convection in oceanic and atmospheric
flows, horizontal density gradients arise, which when combined with background rotation can create large-
scale vortices (CS) due to baroclinic and barotropic instabilities. These CS are believed to be the major
mechanism of horizontal buoyancy transport from the deep convecting regions (chimneys). Laboratory and
numerical experiments conducted in the context of oceanic deep convection and polynya have revealed the
role of CS in various phases of deep convection and the scaling of various processes related to deep convection.
Coherent Vortices in Shallow Water Flows: Recently, much attention has been paid to CS in shallow
water flows, mainly because of the advances of remote sensing instrumentation that may allow educing of
a host of useful information on the water column beneath the surface solely based on surface signatures.
The 3DCS have shorter space-time scales whereas their two-dimensional counterparts that appear in shallow
water are more robust, lingering, and discernible by their surface property contrasts (thermal, sediments,
chlorophyll) with the background. Fairly extensive observations and numerical modeling studies are avail-
able on CS formed in shallow water estuarine and riverine flows (Garvine, R.W. 1999: J. Phys. Oceanogr.,
29, 1892-1909), but much more information is needed to describe transport processes as well as turbulence
parameters pertinent to such CS. A brief overview of available information as well as new laboratory exper-
iments conducted to study the effects of environmental parameters (e.g. tidal forcing) on such CS will be
described.
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It is a remarkable and until today unexplained fact that the mesoscale (wave lengths ∼ 1 − 500 km)


energy wave number spectra of the free atmosphere exhibit a k
−5/3


h -dependence [1] just as the spectrum of
three-dimensional isotropic turbulence. Two conflicting hypotheses have been put forward to explain the


k
−5/3


h -spectra. It has either been assumed [2] [3] that they arise as the result of an inverse energy cascade of
the same type as can be observed in two-dimensional turbulence, or it has been assumed [4] that they arise
as the result of a forward energy cascade of nonlinearly interacting gravity waves. A forward energy cascade
is a process in which large structures of motion break down to smaller structures in a chain process. In this
way, energy is transferred from small to large wave numbers through the energy spectrum of the system
undergoing the cascade. An inverse cascade, on the other hand, is a process in which small structures merge
to form larger structures and energy is transferred in the opposite direction through the spectrum.


In a recent paper [5] I argue that one of the two hypotheses is, on the whole correct, namely the forward
cascade hypothesis. I also argue that the mesoscale cascade motion is of a special type which arises in the
presence of strong stratification, that is when the horisontal Froude number, defined as


Fh = P 1/3/Nl
2/3


h = ε1/3/Nl
2/3


h (1)


is below a critical value Fhcrit
≈ 0.02. Here, P is the energy injection rate at the largest horisontal length


scale of motion lh, in the cascade, N is the Brunt-Väisälä frequency and ε is the energy dissipation rate
which, in a stationary state, is equal to P . A characteristic feature of the motion is layer formation. In the
presence of strong stratification two-dimensional vertically oriented vortices with horizontal length scale lh
will split up into layers with vertical length scale


lv ∼ Fhlh , (2)


a result which is also found in recent experimental [6] and numerical [7] investigations. The layers will
split up into thinner layers which in turn will split up into even thinner layers and so on. As the layers
become thinner they will become sensitive to Kelvin-Helmholtz instabilities causing them to break up in the
horisontal direction. In this way, a cascade is set up which carries energy from large to small scales.


The present contribution summarises the results from numerical simulations also presented in the two
papers [5] [8]. First a series of box-simulations of the Boussinesq equations without system rotation will
be presented. The ratio between the vertical side, Lz, and a horizontal side, Lx, of the box is set so that
Lz/Lx ∼ Fh, which means that the boxes are highly elongated. A special type of forcing is designed to test
the forward cascade hypothesis. Energy is randomly injected into Fourier modes for which the vertical wave
number is equal to zero and the horizontal wave number is equal to four. These modes correspond to large
horisontal motions lacking all vertical variation. Another weak forcing is added to trigger the development
of vertical gradients. A stationary state is reached after some time, in which layers are constantly formed.
By performing a simulation in which the box height Lz has been doubled in comparison with another
simulation, leaving everything else unchanged, it is also demonstrated that the results are independent of
the chosen Lz, i. e. the thickest layers which develop are thinner than the height of the box. In these


simulations, a stable forward cascade of kinetic and potential energy is observed and the mesoscale k
−5/3


h


energy spectra are reproduced. Then a series of simulations including system rotation will be presented.
This series of simulations show that the same type of forward energy cascade is seen in a strongly stratified







fluid with system rotation provided that the rotation rate is not too strong, which means that the Rossby


number, Ro = P 1/3/l
2/3


h fo, where fo = 2Ω sin θ is the Coriolis parameter, is not too small. As long as
Ro > Rocrit ≈ 0.1 the same type of perfect forward energy cascade with the same type of horisontal energy
spectra as in the case with no rotation is observed. In figure 1 the horisontal kinetic and potential energy
spectra from two simulations with Fh = 9.6 × 10−4, Lz/Lx = 1/384, with no rotation (run 5) and quite
strong rotation (Ro = 0.14, run 6) are plotted. In both cases a perfect forward energy cascade was observed


and in both cases we see an extended k
−5/3


h -range in which the kinetic and potential energy spectra take the
form


EKh
(kh) = C1ε


2/3


K k
−5/3


h , EPh
(kh) = C2


εP


ε
1/3


K


k
−5/3


h , (3)


where εK is the dissipation of kinetic energy and εP is the dissipation of potential energy. Somewhat
surprisingly the two constants were found to take the same value: C1 = C2 = 0.51
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Figure 1: Normalised kinetic and potential energy spectra from run 5 (no rotation) and run 6 (Ro = 0.14).
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A basic principle of nonlinear wave propagation is the well known modulational instability (or Benjamin-Feir
instability), established by pioneering work of Benjamin & Feir [1] and others in the 1960s. Benjamin &
Feir [1] showed that a uniform train of plane water waves of moderate, finite amplitude, all at the same
frequency and propagating in the same direction, is unstable in deep water without dissipation. The insta-
bility is intrinsically nonlinear in the sense that the maximal growth rate of the instability is proportional
to the square of the amplitude of the wave train as the amplitude of the wave train decreases, the insta-
bility slows down. Modulational instabilities arise in many physical contexts, including the propagation of
electromagnetic waves in an optical fiber, Langmuir waves in a plasma, and spin waves in a thin magnetic film.


The perception that this kind of instability is ubiquitous and unavoidable is called into question by the wave
pattern shown in Figure 1, a photograph of surface waves created in deep water in a wave tank at Penn State
University. These waves were created by the array of paddles shown at the top of the figure, so this wave
pattern has a two-dimensional, periodic structure simply because that structure was input at the paddles.
(The surface pattern of these waves is two-dimensional, so the velocity field is three-dimensional.) However,
we were surprised to find that this wave pattern shows no evidence of a Benjamin-Feir kind of instability, at
least within the test section of the tank. Further, Hammack, Henderson & Segur [2] found experimentally
that many wave patterns like this show no evidence of such an instability. (For more photos and videos
of these experiments, go to http://www.math.psu.edu/dmh/FRG.) The experiments suggest that a wave
pattern like this might qualify as a coherent structure of waves in deep water, and forced us to reexamine
the stability of deep water waves.


Figure 1: A typical bi-periodic pattern of progressive surface waves in deep water


In earlier work, Segur et al. [3] established both theoretically and experimentally that in the presence of
dissipation (of the right kind), a spatially uniform train of monochromatic, plane water waves is stable in
deep water. (The paper establishes both the linear and nonlinear stability of these waves, within the context
of a well known approximate model.) Thus, the pioneering work of Benjamin & Feir [1] and others is correct
for waves in deep water without dissipation, but we found that any amount of dissipation stabilizes the
instability.


The work presented here extends this result to more complicated surface patterns, like that shown in Fig-
ure 1. We show that in the presence of dissipation, a steadily propagating pattern of surface water waves







that is spatially periodic in two horizontal directions, like that in Figure 1, is linearly stable to small pertur-
bations. Experiments to test this prediction are now in progress.
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The atmosphere -especially the stratosphere- and the ocean are characterized by a stable stratification that
limits vertical motions and makes the flow mainly horizontal. Riley, Metcalfe & Weissman (1981) have shown
that if both the horizontal and the vertical scales of the flow are large compared to the buoyancy length
scale, the leading order dynamics are then two-dimensional. Building upon this conjecture, Lilly (1983)
has proposed that the kinetic energy spectra observed in the atmosphere at mesoscale are a manifestation
of a two-dimensional dynamics with a transfer of energy from small (∼ 1 km) to large (∼ 500 km) scales.
Recently, Lindborg (1999) invalidated this interpretation by deducing from high order statistical moments
that the energy cascade is in the opposite direction : from large to small scales. Billant & Chomaz (2000,
2001) proposed that the dynamic is not two-dimensional because the vertical scale selected by the flow
is the local buoyancy length scale LB = U/N (where U is the horizontal velocity scale and N the Brunt-
Väisälä frequency), invalidating the hypothesis of Riley, Metcalfe & Weissman (1981). They have also shown
that the vertical scale selection is due to an instability, named zigzag instability, in the specific case of a
counter-rotating vortex pair. In the present paper, we extend their work and study the stability of a pair of
co-rotating vortices in a stratified fluid.


We show numerically, theoretically and experimentally that two co-rotating vertical vortices in a stably
stratified fluid are subjected to a new three-dimensional instability. This zigzag instability induces the
formation of thin horizontal layers with a thickness inversely proportional to the Brunt-Väisälä frequency.
This three-dimensional instability is believed to make stratified turbulence depart from two-dimensional
turbulence since it alters the merging of vortices.
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Figure 1 a Vertical vorticity of the eigenmode
of the zigzag instability for Fh = 1, Re = 1000,
a/b = 0.15 and kz = 1.5. The arrows indicate
the direction of translation of the two vortices.
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Figure 1 b Growth rate as a function of kzFh for
Re = 15000, Fh = 1.7 (t), Fh = 1 (◦), Fh = 0.5
(4) and Fh = 0.2 (+). The dotted line represents
the asymptotic growth rate.


The three-dimensional stability of a pair of co-rotating vertical vortices has been investigated. The elliptic
instability is dominant when the horizontal Froude number Fh = Γ/πa2N , where Γ is the vortex circulation
and a the vortex radius, is large: Fh > 10. In contrast, The zigzag instability is the most unstable instability
for strong stratification: Fh < 2.85. As seen on the vertical vorticity of the eigenmode (fig. 1a), the zigzag
instability translates the two vortices bringing the vortices closer or farther, alternatively along the vertical.
The growth rate of the zigzag instability is a function of the rescaled wavenumber kzFh (fig. 1b). The most
unstable wavelength decreases therefore as the stratification increases.







The effect of a planetary rotation has been also investigated. The maximum growth rate of the zigzag
instability is approximately independent of the Rossby number (Ro = Γ/πa2f , where f is the coriolis
parameter). In contrast, the most unstable wavenumber kzm varies continuously and scales as the Rossby
number for small Ro : kzm ∝ Ro/Fh i.e. kzm ∝ N/f for small Fh and Ro in agreement with the quasi-
geostrophic theory (Dritschel, de la Torre Juárez & Ambaum, 1999).


t1 = 0s t2 = 81s t3 = 87s t4 = 135s


Figure 1: Side view visualizations of the zigzag instability of two co-rotating vortices in a strongly stratified
fluid at different times.


The existence of the zigzag instability on the co-rotating vortex pair has been confirmed experimentally.
The experiments have been performed in a 100cm wide, 100cm long and 70cm deep glass tank filled with a
linear stratified salt solution. Two co-rotating columnar vortices are created by quickly rotating two flaps
with an apparatus similar to the one used by Meunier & Leweke (2001). The flow is visualized by UV light
and fluoresceine dye.


For strong stratification, we have observed the zigzag instability (figure 2). Just after their formation
(time t1), the two vortices rotate one around the other and are straight along the vertical. At time t2, the
zigzag instability which distorts symmetrically the two vortices can be clearly seen. The distance between
the vortices varies sinusoidally along the vertical generating layers where merging is accelerated or delayed
(time t3) resulting in a complex twisting of the vortices (time t4).


———————————
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[7] Dritschel D. G. and de la Torre Juárez M. 1996 The instability and breakdown of tall columnar
vortices in a quasi-geostrophic fluid. J. Fluid Mech. 328, 129–160.







GTP Workshop on
Coherent Structures in Atmosphere and Ocean
at NCAR, 11-14 July 2005, Boulder, CO, USA


Energetics of a Field of Submesoscale Vortices
Resulting from the Relaxation of Diapycnal Mixing Events


M.-Pascale Lelong 1 and Miles A. Sundermeyer2


1NorthWest Research Associates, P.O. Box 3027 Bellevue, WA, 98009-3027, USA
2School for Marine Science and Technology, University of Massachusetts Dartmouth,


706 S. Rodney French Blvd., New Bedford MA, 02744-1221, USA


The original motivation for our numerical study came from a desire to understand the dye-dispersion
patterns observed during the Coastal Mixing and Optics (CMO) experiment during late summer restratifi-
cation over the New England shelf. The dye patterns revealed, among other things, significant lateral mixing
at small scales traditionally ascribed to internal waves which could not be reconciled with existing models
of shear dispersion or dispersion by lateral intrusions ([7], [9]). Similar behavior was also found during the
North Atlantic Tracer Release Experiment (NATRE) in the pycnocline of the open ocean ([2], [10]) where
the observed dispersion on scales of 1-10km was 40 times that predicted by internal waves. Temperature and
velocity microstructure measurements taken during CMO ([5], [9]) revealed the presence of patchy regions
of intense mixing superimposed on a relatively quiescent background of low diapycnal diffusivities. These
well mixed regions are speculated to represent the end-state of random, localized wavebreaking or shear
instability events. The fact that the turbulent regions exhibited patchiness on the same spatial scales as the
dye, has led to the conjecture that the significant dispersion on those scales may be explained by the presence
of submesoscale vortical motions formed by the adjustment of the patches under gravity and rotation. The
same interpretation has been used to explain the submesoscale dye dispersion in the NATRE data [6].


The physical situation we envision as being responsible for the creation of isolated density anomalies is
as follows: a wave packet propagates in a stably stratified region, ultimately becomes unstable to shear or
convective instability and breaks. The turbulence generated by the wavebreaking creates a patch of well
mixed fluid, a density anomaly, out of equilibrium with the ambient stratification. Consequently, a mass
adjustment to restore equilibrium takes place: Some of the initial potential energy is converted to kinetic
energy in the form of a vortex structure, some is radiated away as transient internal waves and some is
dissipated [4]. We speculate that the cumulative effect of many such random events produces a field of
energetic submesoscale vortices.


We have performed numerical simulations designed to model the formation and evolution of submesoscale
vortices by the mass adjustment of anomalous density patches ([8], [3]). In our model, the flow is spun
up from rest by periodically turning on for a short time, at random spatial locations, a depth-dependent
diffusivity which acts on the ambient fluid to create density anomalies (of desired shape and strength) which
subsequently adjust to form small-scale vortices. Our objective is not to model the details of individual wave
breaking events explicitly, but rather to parameterize their effect, focusing instead on the adjustment of the
weakly stratified regions once all turbulent motions have ceased.


The lateral dispersion of a dye-tracer released in a field of submesoscale vortices created by this process
is addressed in a companion presentation (see Sundermeyer and Lelong). Here, we focus primarily on the
energetics of the flow fields, with an emphasis on horizontal and vertical energy cascades and the partition of
energy into wave and vortex components. Our goal is to establish the links between vertical mixing (resulting
from wavebreaking) and horizontal stirring by small-scale vortices and hence to estimate the efficiency of
buoyancy-driven mixing for lateral dispersion. From a practical perspective, a clear understanding of the
energy budget is needed in order to devise physically based parameterizations of small-scale lateral dispersion
processes that are not currently resolved in coastal ocean models. For example, knowing whether energy







cascades toward small or large scales will help us assess and parameterize the impact of small-scale, unresolved
motions on the larger, resolved scales.


We find that the amount of potential energy that is converted to kinetic vortex energy depends on the
strength of the density anomalies, on the lateral extent L of the anomalies relative to the Rossby radius
of deformation R, and on the frequency of the wavebreaking events. Not surprisingly, the most energetic
vortices are produced by mixing events for which L ≈ R. For L > R, rotational effects dominate the
adjustment process and very little of the initial available potential energy is converted to kinetic energy.
Consequently, the vortices produced are weak. In contrast, when L < R, much of the available potential
energy is radiated away as transient internal waves and the resulting vortices, if they form at all, are again
weak.


When anomalies are injected infrequently, the flow exhibits linear behavior. The vortices do not interact
with each other and behave independently. As the frequency of anomaly input is increased, the flow becomes
increasingly nonlinear, the vortices begin to interact and merge. In the regime L ≈ R, an inverse cascade
develops and the flow fails to equilibrate. In this regime, the flow behaves like quasi-geostrophic turbulence.
For smaller vortices, on the other hand, energy cascades downward to smaller vertical scales.


A normal-mode decomposition allows the slowly varying geostrophic modes to be distinguished from
rapidly oscillating internal wave modes [1]. This decomposition has been used diagnostically to split the
energy into vortex and wave contributions.
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Introduction
Spontaneous zonal jet formation is an well-known significant feature in two-dimensional β-plane turbu-


lence ([1], [2]). The formation itself is considered due to the energy upward cascade which is in favor of
zonal structure by the existence of the β term. Why the formed zonal jets are maintained in the turbulence,
however, has been an open question. It is also found that there is an asymmetry between eastward and
westward jet profiles which emerged from turbulent states in forced-dissipative experiments [2]. That is,
eastward jets are narrower and more intense than westward jets. This asymmetry is thought to be related
to the Rayleigh-Kuo criterion of barotropic stability. Whether such an asymmetry exists or not in decaying
experiments, however, has not been explored. Therefore, we study the maintenance mechanism and sym-
metric properties of the zonal jets in two-dimensional β-plane decaying turbulence numerically, conducting
a number of ensemble experiments. Furthermore, we propose a theoretical scenario to explain the found
asymmetry using Rossby wave propagation theory.


Model
The system under consideration is a non-divergent two-dimensional flow with a hyper-viscosity on a


β-plane. The flow is governed by the vorticity equation


∂ζ


∂t
+
∂ψ


∂x


∂ζ


∂y
− ∂ψ


∂y


∂ζ


∂x
+ β


∂ψ


∂x
= (−1)p+1ν2p(∇2)pζ. (1)


Here, ζ ≡ ∇2ψ is the vorticity, ψ is the stream-function, x is the longitude, y is the latitude, t is the time,
∇2 is Laplacian, ν2p is the hyper-viscosity coefficient, p is the order of the hyper-viscosity. We fixed p and νp


as p = 2 and νp = 1.0×10−10. We assume that ψ has a period of 2π in both x and y directions. To integrate
the equation (1) numerically, we adopted Fourier spectral method with the truncation wavenumber of 1024
for the spatial discretization. The time integration scheme is the classical 4th order Runge-Kutta scheme.


The initial condition is a random vorticity field which has a peak in the energy spectrum at the wavenum-
ber K=226. The phase of each component is set randomly. The total energy of the initial state is set to 1/2.
This means that the root square mean velocity (u0) for the initial state is 1. We swept the value of β as an
experimental parameter for ten values. Here, only the results for β = 6400 are shown.


Results
Figure 1 shows composites of intense jet profiles at the final stage (t = 12). It is clear that there is


an asymmetry between Fig.1(b) and Fig.1(d), that is, westward jets are narrower and more intense than
eastward jets. This asymmetry can be also seen in the time-evolution of the peak flow speeds of westward
jets and eastward jets (Fig. 2). Although there is no difference between the peak speeds initially, the peak
speed of westward jets becomes larger than that of eastward jets. We confirmed that the asymmetry existed
for other values of β and checked the statistical validity by using other random initial conditions.







Figure 1: Composite of intense jet profiles at t = 12. (a):
composite of 36 intense eastward jet profiles. (b): the mean
profile and the standard deviation of (a) (gray area). (c):
composite of 42 intense westward jet profiles. (d): the mean
profile and the standard deviation of (c) (gray area). the
dashed line is the mirror image of the profile in (b)


Figure 2: Time evolutions of the peak flow
speeds of westward jets (gray) and eastward
jets (black). The horizontal axis indicates t.


Theory
To explain the asymmetry we found in the previous section, we propose a following scenario for the


asymmetry formation.


1. At the early stage, weak zonal jets are formed by the upward energy cascade in the β-plane turbulence.


2. Considering Rossby wave propagation theory, l2 (l is the latitudinal wavenumber) of Rossby waves be-
comes so large in westward jet regions that Rossby waves are dissipated more easily than in eastward
jet regions due to the hyper-viscosity.


3. When Rossby waves are dissipated, they leave their westward pseudo-momentum to zonal jets. Therefore,
westward jets are intensified sharply.


We can check the validity of the scenario, using the linearized equation of (1). The detail is described in
[3], and it will be explained at the Workshop.


Conclusions
We found an asymmetry in zonal jet profiles in β-plane decaying turbulence — westward jets are narrower


and more intense than eastward jets. We made clear that the asymmetry is due to the change of l2 of Rossby
waves by the basic zonal flow using Rossby wave propagation theory. This mechanism also contributes to
the maintenance of zonal jets.
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Introduction: A hundred years ago Albert Einstein began his celebrated paper on the photoelectric effect
by pointing out the profound mismatch between the accepted way of thinking about matter and the accepted
way of thinking about radiation. I want to argue that there has been a similar mismatch in ways of thinking
about wave-induced forces on the one hand, and vortex dynamics on the other, and that its resolution leads
to a significant paradigm change. This is work in collaboration with Oliver Bühler and is the subject of two
recent papers[1].


Background: Wave-induced eastward or westward mean forces and the consequent “gyroscopic pumping”
drive persistent, global-scale, greenhouse-gas-transporting meridional circulations in the Earth’s middle at-
mosphere, between about 15 and 100 km altitude. In the middle latitudes of the summer hemisphere, for
instance, persistent eastward forces mediated by internal gravity waves pump air equatorwards, through
the Coriolis effect, at mesospheric altitudes around 90km; for a recent review see [2]. The resulting polar
upwelling supplies water vapour from below and acts as a gigantic natural refrigerator. Despite intense solar
radiation, maximal at the pole because of the Earth’s tilt, temperatures as low as 105 K have been observed
in the summer polar cap. These are by far the lowest of naturally-occurring terrestrial temperatures: to
that extent, the sunniest place on Earth is also the coldest place on Earth.


The wave-induced forces responsible for this remarkable refrigeration phenomenon — and other equally
remarkable phenomena such as the “quasi-biennial oscillation” of the east–west winds in the tropical lower
stratosphere — cannot all be directly represented in global numerical models of the atmosphere. The
reason is the small spatial scale of the waves, many of which are not resolvable on the relatively coarse
grids of the global models. Therefore standard practice today is to represent the waves through so-called
“parametrization schemes” based on ray theory and wave–mean interaction theory.


However, the version of the wave–mean theory on which all such schemes are based relies on the classical
paradigm in which the only persistent wave-induced forces are those associated with wave breaking and
other wave-dissipation processes, or with wave generation. We have shown, however, that there are ‘missing
forces’, equally persistent, that lie outside that paradigm.


Effects of horizontal refraction: The ‘missing forces’ arise whenever horizontal refraction is significant.
(Whether it can be neglected in the real atmosphere is still unclear.) There are two main points. First, a
generalized wave–mean theory that includes horizontal refraction implies the existence of persistent wave-
induced forces of a fundamentally different kind from those considered in classical wave–mean theory. These
“missing forces” are unrelated to wave dissipation, yet have a cumulative impact. They may furthermore
involve interesting “remote recoil” effects, one of which is that the effective wave-induced force, for wave
parametrization purposes, may act at a location removed from the locations where the waves refract. The
simplest relevant model problem is the refraction of a narrow beam of acoustic or gravity waves by a single
vortex, in a two-dimensional gas-dynamic or shallow-water system. There, the effective force is felt at
the vortex core, regardless of its spatial separation from the waves. The reality and precise mechanism
of this remote recoil effect is clearly demonstrated, in detail, by the analysis given in ref. [1]. That such
remote recoil effects are, moreover, generic is clear from the results in [1] taken together with classical studies







of internal gravity waves, notably that of Bretherton [3]. Studies of more realistic cases involving internal
gravity waves are reported in ref. [1b].


Second, horizontal refraction, a seemingly slow process on näıve order-of-magnitude grounds, for internal
gravity waves in typical background wind fields in the atmosphere, can nevertheless accelerate catastroph-
ically in a significant proportion of cases through a process that may be called “wave capture”. This is
a nontrivial variant of classical critical-layer absorption, in which the magnitude |k| of the wavenumber
vector k increases not linearly with time, as in the classical case, but exponentially.


Wave capture and the wave momentum myth: Wave capture provides a telling caveat against the
“wave momentum myth”. It demonstrates in acute form the fallacies that can arise from conflating mo-
mentum with pseudomomentum. [4]–[6]. The myth can often be seen enshrined in statements like “the
waves gave their momentum [sic] to the mean flow.” But the pseudomomentum p of a wave packet is given,
within the standard ray-theoretic approximations, by the well known formula p ≈ Ek/ω̂ where k is the
wavenumber vector and ω̂ the intrinsic frequency, or frequency seen in a co-moving reference frame, i.e. a
frame moving locally with the background flow; E is the (positive definite) energy of the wave packet, seen
in the same co-moving reference frame, i.e., the intrinsic wave-energy in the Bretherton–Garrett sense. Now
this evidently leads to an acute paradox when wave capture is involved simply because of the fact, already
mentioned, that |k| → ∞ with the horizontal components tending to infinity. Arbitrarily large forces seem
to appear from nowhere!


Wave–vortex duality: The paradox is due to the Einsteinian mismatch. This is between the notion of
local wave-induced forces on the one hand, and the notion of vortex dynamics, which involves vorticity
or potential-vorticity (PV) invertibility hence action at a distance. The two can be reconciled within a
framework of ‘wave-vortex duality’, whose key points are firstly that wavepackets behave in some respects
like vortex pairs, as originally shown in the abovecited work of Bretherton, and secondly that a collection of
interacting wavepackets and vortices satisfies a conservation theorem for the sum of wave pseudomomentum
and vortex impulse, provided that the impulse is defined appropriately. It must be defined as the rotated
dipole moment of the Lagrangian-mean PV. This PV differs crucially from the PV evaluated from the
curl of either the Lagrangian-mean or the Eulerian-mean velocity. Reference [1b] establishes these results
in the strong-stratification limit for rotating (quasi-geostrophic) as well as for non-rotating systems. The
concomitant momentum budgets can be expected to be relatively complicated, and to involve far-field recoil
effects in just the sense discussed in ref. [1a]. The results underline the three-way distinction between
impulse, pseudomomentum, and momentum. While momentum involves the total velocity field, impulse and
pseudomomentum involve, in different ways, only the vortical part of the velocity field.
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We present the Geophysical/Astrophysical Spectral-element Adaptive Refinement (GASpAR) code [5] and
use it to demonstrate dynamically adaptive simulation of vortices in decaying 2D turbulence. The adaption
criteria also suggest techniques for vortex and coherent-structure identification. We will explore how the
multiresolution hierarchical structure of spectral elements also suggests a way to quantify interactions among
different vortices and the incoherent background flow.


Coherent-structure dynamics involves a large range of strongly interacting scales in space and time.
Fronts, plumes and other structures in geophysical flows have been successfully simulated in recent years
using dynamic adaptive refinement (DARe). There are a growing number of DARe codes and applications.
All of these involve somehow partitioning the computational spatial domain D into disjoint elements D̄ =⋃K


k=1 Ēk. Almost all current DARe codes are based on finite-difference, finite-element or finite-volume spatial
discretizations; i.e., a small number of values is used to represent the problem solution in each Ēk. Thus
almost all current DARe simulations are intrinsically locally low-order w.r.t. the size hk of each Ek. In
contrast, there are a few DARe codes being developed that are locally high-order w.r.t. a parameter ~pk in
each Ek. These spectral-element methods (SEMs) have a relatively long history in engineering but have only
recently been applied to astro/geophysics.


SEMs use degree-pα
k polynomial expansions, defined by pα


k +1 quadrature nodes
along coordinate xα in Ek. For example, Fig. 1 shows one of the 36 Gauss
interpolating basis functions φ̃~,k(~x) for D = E1 and p1


1 = p2
1 = 5. There are


several properties of SEMs that make them very appropriate for complicated flow
simulations. Perhaps most significant is the fact that unlike low-order methods,
SEMs are inherently minimally diffusive and dispersive. This property is clearly
important when trying to model flows at high Reynolds number Re (low viscosity)
that characterize turbulent behavior. Also SEMs can be used in high-resolution
studies of turbulence in domains with complicated boundaries. SEMs also are
naturally parallelizable [2, e.g.], which is important when modeling flows at high
Re with many degrees of freedom (d.o.f.) involving multiple spatial and temporal
scales.


Figure 1: φ̃(3,3),1.


SEMs are spectrally convergent w.r.t. pk when the solution is smooth in Ek, but are also effective when
the solution is not smooth elsewhere. In most flows of interest, it is scale interaction that determines not
only the structures that form but also their statistics and evolution. This suggests that reasonably high-
pk approximations are required in each element. Thus flows of interest mainly call for a nonconforming
h-refinement strategy only, making use of relatively high, fixed degree. Another motive is that the so-called
“mortar element method” for globally continuous p-type refinement has been cited as causing instabilities
in flow calculations [4].


To sketch out the formalism, we consider the d-dimensional Burgers equation for velocity ~u(t, ~x):


∂t~u + (~u · ~∇)~u = Re−1∇2~u (1)


We discretize by integrating (1) against a test function and then approximating by Gauss-Lobatto quadrature,
to arrive at a system of ODEs in time:


M
duα


dt
+ N (~u)uα = Re−1L uα, α ∈ {1, . . .d}, (2)







Figure 2: High-order DARe solution of (1), showing kinetic energy |~u|2/2, zoomed to the northeast quadrant of a square
biperiodic domain. Yellow lines show the element boundaries and black lines show the quadrature nodes. From left the time
t = 0.502,0.511,0.573,0.595 and element count K = 22,31,40,43.


where M is the mass matrix, uα is a column vector of collocated values on quadrature nodes, N(~u) is the
nonlinear-advection matrix, and L is the Laplacian. Continuity for ~u is imposed by reconciling element-
boundary data among neighbor Eks. Time discretization of (2) begins by standard semi-implicit split-
multistep methods, but includes preconditioning issues beyond the present scope. In Fig. 2 we show a
high-order DARe solution of (1) with a periodized radial N-wave initial condition. Each yellow-outlined box
is an Ek corresponding to a coordinate transformation of Fig. 1. The strongly nonlinear curved front (red)
is accurately captured as it spreads outward and the kinetic-energy field decays.


SEM-DARe is enhanced w.r.t. low-order DARe in regard to adaptivity criterion.
Since every Ek contains


∏d
α=1(p


α
k + 1) local d.o.f., that information provides a


local accuracy estimate. Possibilities that have been tested include estimating
local Legendre-spectrum decay, or comparing relative contributions to the ~u-
norm in L2(Ek) from Ek vs from its 2d children by d-way bisection. The latter
possibility is enabled by the multiresolution hierarchy intrinsic to SEM-DARe,
i.e., the span of φ~,k of any Ek being properly contained in the span of φ~ ′,k′ of its
children. Thus, multiresolution methods become available for both adaptivity
and vortex extraction [1].


Figure 3 shows the initial vorticity field ζ(0, ~x) [3, 6] for a 2D incompress-
ible Navier-Stokes simulation, in preparation.


Figure 3: ζ(0, ~x) contours.
Dashed curves show ζ < 0.
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Two-dimensional decaying Navier-Stokes (2D NS) turbulence is essentially the only place in fluid turbulence
theory where a quantitative connection can be made with mainstream, textbook, statistical mechanics. The
reason seems to be the near-conservation of energy at high large-scale Reynolds numbers Re, high enough
that many hundreds of eddy turnover times can elapse in one energy decay time. This provides time for
the system to explore its phase space at near-constant energy, so that probabilistic considerations can come
into play in predicting a well-defined ‘final,’ or late-time, state. (Late times are those much greater than an
eddy turnover time, but less than an energy decay time.) Late-time states typically consist of large-scale,
long-lived vortices. The data is often computational.


Yet paradoxes remain. For example, the system is far from fully conservative in a rigorous sense. Every
numerical computation, no matter how high the Reynolds number, has shown a large decay of enstrophy
(mean square vorticity). It is unclear that any regime exists, no matter how high Re is, where enstrophy
will be approximately conserved for such long times, or where the Navier-Stokes behavior will otherwise
approximate Euler equation (zero viscosity) behavior [1]. It also appears that most 2D NS turbulence must
be a consequence of initial conditions or of continuous forcing or injection; it seems nearly impossible to
excite it from 2D shear-flow instabilities alone, in sharp contrast with three-dimensional cases.


Introduction of probability into the state of the system has been done in three principal ways: (1) the NS
equation has been Fourier-decomposed and a phase space has been defined whose coordinates are the real and
imaginary parts of the (discrete) Fourier coefficients; (2) the vorticity has been discretized in terms of ideal,
parallel, (Onsager) line vortices (‘points’ in two dimensions), leading to a phase space whose Hamiltonian
coordinates are the position coordinates of the vortices and in which Boltzmann statistics can be applied;
and (3) the vorticity has been discretized in terms of mutually-exclusive areas (‘patches,’ in two dimensions)
to which Lynden-Bell statistics can be applied. In none of the three discretizations has viscous dissipation
been introduced in a wholly unobjectionable way, and in the Fourier discretization, crucial information about
the complex phases of the Fourier coefficients seems inevitably to get lost.


Nevertheless, numerical computations have repeatedly shown predictive power for a ‘most probable’ or ‘max-
imum entropy’ mean-field theory based on an entropy maximization subject to constraints of approximately
conserved energy and vorticity fluxes. To identify a predicted most-probable (e.g., ‘sinh-Poisson’) depen-
dence of vorticity on stream function quantitatively is itself a numerically demanding task, both for the
‘point’ and ‘patch’ discretizations. Whether the ‘point’ and ‘patch’ predictions agree depends upon the size
chosen for the ‘patches,’ and this choice seems to be arbitrary, within wide latitude. The ‘point’ predictions
seem generally accurate in rectangular periodic boundary conditions, but in at least one case, the ‘patch’
predictions consistently yield agreement with a computed one-dimensional final state (the ‘bar’ state) that
differs qualitatively from the more familiar dipolar state [2]. This exceptional behavior is not yet fully un-
derstood.


Outside the realm of periodic boundary conditions, the details of the coherent structures formed depend
crucially on the shape of the boundary. In the case of circular no-slip boundaries, angular momentum is







nearly conserved and plays a pivotal role [3]. For no-slip rectangular boundaries, angular momentum can be
generated by interactions with the walls, leading to the intriguing phenomenon [4] of ‘spontaneous spin-up.’
Spontaneous reversal in sign of the angular momentum has even been reported for the case of randomly-
forced 2D turbulence [5]. Some of the computed effects have been observed in experiments in stratified tanks
[6]. Stress-free circular boundaries seem to result in dipolar states similar to those in rectangular periodic
boundaries [7]. It seems unrealistic to hope that very much ’universal’ behavior can be identified for 2D NS
turbulence that is independent of boundary conditions or boundary shape.


Two-dimensional magnetohydrodynamic turbulence (2D MHD) develops rather different coherent structures,
as does the Charney-Hasegawa-Mima equation [8].


———————————
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With the help of direct numerical simulations (DNS), we investigate the transfer of energy and triadic
interactions in fully developed forced three-dimensional hydrodynamic and magnetohydrodynamic (MHD)
turbulence. The assumption of locality of transfer among the different scales is one of the building blocks of
Kolmogorov (1941) theory of turbulence, and also extended (with some caveats) to the case of coupling to
a magnetic field in the MHD framework.


In the hydrodynamic case, we use DNS on a grid of 10243 points of a flow forced with a Taylor-Green
vortex. Reynolds numbers of Rλ = 792 (based on the Taylor lengthscale) are reached. The resulting flow has
motivated recent studies of magnetic field amplification in a conducting fluid [1], and share similarities with
ongoing experiments. In the steady state, the flow displays a well defined large scale pattern superimposed
with turbulent fluctuations at small scales (see e.g. [2]).


We find that nonlinear triadic interactions are dominated by their non-local components, involving widely
separated scales, even though the nonlinear transfer itself is local and the scaling for the energy spectrum
is close to the classical Kolmogorov law. The link between these findings and the intermittency of the small
scales, and their consequences for modeling of turbulent flows are also briefly discussed.


We further investigate the transfer of energy between scales in fully developed forced three-dimensional
MHD turbulence. To this end, a small magnetic field is added to the turbulent flow at resolutions of 2563 grid
points. The evolution of the system is followed as the magnetic energy is amplified and sustained by currents
induced by the motion of the fluid (dynamo action). At late times, the growth of a large scale magnetic field
reacts on the velocity field, suppressing small scale fluctuations and leaving a large scale pattern reminiscent
of the laminar flow.


The detailed study of interactions between scales shows that the transfer of kinetic energy from the
large scales to kinetic energy at smaller scales, and the transfer of magnetic energy from the large scales
to magnetic energy at smaller scales, are local, as is also found in the case of neutral fluids. However, the
transfer of energy from the velocity field to the magnetic field is a highly non-local process in Fourier space
[3, 4]. Energy from the velocity field at large scales can be transfered directly into small scale magnetic fields
without the participation of intermediate scales.


———————————
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This research is motivated by results from laboratory and field experiments and from numerical simulations
addressing turbulence in stably-stratified fluids. Of particular interest is when the effects of stratification
are ‘strong’; here this implies that the Froude number F` is small, where F` = u′/N`H is based upon
an rms velocity u′, a horizontal scale of the energy-containing motions `H , and the buoyancy frequency N .
Recent results from field experiments (Wroblewski et al.[1]; Pagel[2]) indicate, in addition to the intermittent
behavior of the turbulence, a scaling range at horizontal scales well below those affected by rotation, but very
possibly above the scales at which the Kolmogorov-Obukhov-Corrsin (KOC) inertial subrange turbulence
would be expected to occur. In addition, the flow at these scales appears to be clearly anisotropic, contrary
to the KOC assumptions. Laboratory experiments (e.g., Spedding et al.[3]; Praud et al.[4]) indicate the
appearance of quasi-horizontal motions resulting from turbulence as the flows decays and the effects of
stratification become stronger. Theoretical arguments (Lilly[5]; Billant and Chomaz[6]) suggest that, for
large enough Reynolds numbers, strongly-stratified flows may continually develop local instabilities and
turbulence. The Reynolds numbers in the low Froude number regime in the laboratory experiments is
somewhat low, however, so that it is not clear whether the results of the experiments in this regime scale up
to geophysical flows.
To address the dynamics of turbulence at low Froude number but sufficiently high Reynolds number, several
series of direct numerical simulations were carried out. (For a detailed discussion of some of these simulations,
see Riley and deBruynKops[7].) Numerical solutions to the Navier-Stokes equations subject to the Boussinesq
approximation were initialized to simulate the ‘later stage’, low Froude number regimes of the laboratory
experiments, allowing the Reynolds number to be maintained as large as possible. Two flows were considered
as initial conditions: Taylor-Green flow, oriented so that the flow field is initially horizontal; and a quasi-
horizontal array of ‘Karman’-street vortices, somewhat like the vortex pattern in the laboratory experiments.
Simulations were carried out for a limited range of low Froude numbers, and for a somewhat broad range
of Reynolds numbers such that, for the higher Reynolds number cases, the statistical results were fairly
insensitive to the Reynolds number.
As in the laboratory experiments, inverse cascading occurs as the quasi-horizontal vortices in the numerical
simulations grow in horizontal scale with time. As Lilly suggested, however, the dynamics of these vortices
led to the development of strong vertical shearing regions. For high enough Reynolds numbers, these lead
in turn to the development of local, Kelvin-Helmholtz-like instabilities and local turbulence patches. A
visualization of such an instability is shown in the figure. The results suggest that turbulence patches will
occur as long as Re`F


2
` = ε/νN2 is larger than a critical value, a fact recognized in the oceanographic


literature. Here Re` = u′`H/ν, where ν is the kinematic viscosity.
The separation in length scales from the energy-containing range (`H ) of the quasi-horizontal motions to the
instability scale (`I) is approximately proportional to the Froude number (Lindborg[8]). For strong enough
stratification, this corresponds to a broad range in wave number space, allowing for the nonlinear, forward,
inviscid transfer of energy from wave numbers of order 1/`H to those of order 1/`I , and suggesting the
possibility of a new type of inertial subrange. The development of such a subrange is consistent with our
simulation results, and with those of Lindborg[8]. It is also consistent with the non-isotropic behavior and
the spectral power laws observed in the scaling range in the recent field experiments.







Figure 1: The top panel shows part of a horizontal slice through the w field. the white dashed line gives the
orientation of a vertical slice through the horizontal plane. The bottom panel shows the density field on that
vertical slice.


Finally, a true KOC cascade and inertial range would be expected if the scale of the local instability and
turbulence, `I , is much larger than the Kolmogorov scale, η. This implies that


F`R
3/4
` � 1 .
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Turbulent flows play an important role in many areas of atmospheric and oceanic flows as well as engi-
neering fluid mechanics. Accurate simulation of a turbulent flow requires that the energetics of the large scale
energy containing eddies, dissipative small scales, and inter-scale interactions to be accounted for. While
the direct numerical simulation (DNS) of most geophysical flows seems unlikely in near future, turbulence
modeling could provide qualitative and in some cases quantitative measures for many applications. Large
Eddy Simulations (LES) and the Reynolds Averaged Navier-Stokes Equations (RANS) are among the nu-
merical techniques to reduce the computational intensity of turbulent calculations. In LES, the dynamics of
the large turbulence length scales are simulated accurately and the small scales are modeled. On the other
hand, RANS models are obtained by time averaging the Navier-Stokes equations. In this case most of the
unsteadiness is averaged out. Consequently, the time mean quantities are calculated while the faster scale
dynamics are modeled.


More recently, Holm, Marsden and their coworkers [4] introduced a Lagrangian averaging technique for
the mean motion of ideal incompressible flows. Figure 1 from Zhao and Mohseni [7] contrasts the derivation
of LES, RANS, and the Lagrangian Averaged Navier-Stokes-α (LANS-α) equations. Unlike the traditional
averaging or filtering approach used for both RANS and LES, where the Navier-Stokes equations are averaged
or spatially filtered, the Lagrangian averaging approach is based on averaging at the level of the variational
principle. In the isotropic Lagrangian Averaged Euler-α (LAE-α) equations, fluctuations smaller than a
specified scale α are averaged at the level of the flow maps. Mean fluid dynamics are derived by applying an
averaging procedure to the action principle of the Euler equations. As shown in Fig. 1, both the Euler and
the Navier-Stokes equations can be derived in this manner. The usual Reynolds Averaged Navier-Stokes
(RANS) or LES equations are then obtained through the subsequent application of either a temporal or
spatial average. The critical difference with the Lagrangian averaging procedure is that the Lagrangian
(kinetic energy minus potential energy) is averaged prior to the application of Hamilton principle and a
closure assumption is applied at this stage. This procedure results in either the Lagrangian averaged Euler
Equations (LAE-α) or the Lagrangian averaged Navier-Stokes Equations (LANS-α), depending on whether
or not a random walk component is added in order to produce a true molecular diffusion term. Since the
Hamilton principle is applied after the Lagrangian averaging is performed, all the geometrical properties
(e.g. invariants) of the inviscid dynamics are retained even in the presence of the model terms which arise
from the closure assumption [4]. For instance, LAE equations posses a Kelvin circulation theorem. Thus
it is potentially possible to model the transfer of energy to the unresolved scales without an incorrect
attenuation of quantities such as resolved circulation. This is an important distinction for many engineering
and geophysical flows where the accurate prediction of circulation is highly desirable.


However, most geophysical flows of interest are often anisotropic. For example, due to rapid damping
of turbulent fluctuations in the vicinity of a wall, the application of the isotropic LANS-α equations with a
constant α is not appropriate for long term calculations. In order to capture the correct behavior in such
systems the parameter α must be spatially or/and temporally varied in the direction of anisotropy [2], i.e.
wall normal direction. There has been some attempt (with limited success) in order to remedy this problem.
There are at least two approaches to anisotropy in the LANS-α equations:


(i) To derive a set of anisotropic LANS-α equations. See alternative derivations in [3, 5].







(ii) Use the isotropic LANS-α equations, but with a variable α to compensate for the anisotropy.


At this point much more work must be done on the anisotropic LANS-α equations before they can be applied
to practical problems. The second approach listed above is what will be explored in this study.


In this talk a dynamic procedure for the


(Navier−Stokes equations)
          add viscosity partial differential equation


α       (LAE−     equations)


partial differential equation
      (Euler equations)


start with the flow
Lagrangian L(u)


LANS−αRANS LES


add viscositylow pass filteringtime averaging


apply the Hamilton principle


apply the Hamilton principle average the Lagrangian


Figure 1: Derivation of the averaged flow equations, from
Zhao and Mohseni [7]


Lagrangian Averaged Navier-Stokes-α (LANS-
α) equations is developed where the variation
in the parameter α in the direction of anisotropy
is determined in a self-consistent way from
data contained in the simulation itself. The
dynamic model is initially tested in forced and
decaying isotropic turbulent flows where α is
constant in space but it is allowed to vary in
time. In order to evaluate the applicability
of the dynamic LANS-α model in anisotropic
turbulence, a priori test of the dynamic LANS-
α in channel flows is performed at various Tay-
lor Reynolds numbers between 180 and 550
based on the wall friction velocity to find the
variation of α in the wall-normal direction. It
is found that in the wall region the param-
eter α rapidly increases away from the wall
and saturates to an almost constant value in
the outer region. An appropriate scaling for
α is also identified. As a result, the isotropic
LANS-α equations can now be easily used in
anisotropic wall bounded flows with a univer-
sally damped α. Current numerical experi-
ments exhibit a promising application of the
isotropic LANS-α model for anisotropic flows
in complex geometries. For more references
and details see Zhao and Mohseni [7, 6] and Bhat et al. [1].
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The investigation of submerged bluff-body wakes in stratified flows has been propelled both by specific
Naval applications and by their convenience as an experimental model for the production of a patch of
turbulence whose interaction with, and spread into the ambient is of quite broad geophysical interest. The
evolution of this initially-turbulent patch of fluid is characterised by the emergence of surprisingly well-
ordered coherent structures which remain identifiably above background noise for very long times (Nt ≈
103, x/D ≈ 104; N is the buoyancy frequency (rad/s), x is the downstream distance from a body of diameter
D). This phenomenon is observed in all stably-stratified fluids[1], regardless of the initial value of the internal
Froude number (for bodies of diameter D moving at steady speed U through a constant-N environment,
Fr = 2U/ND).


The longevity and compactness of stratified wakes sheds a different light on recent literature on the
long-lasting nature of some island wakes[2] and their potential dynamical significance in coarse-resolution
numerical weather prediction models[3]. It is also of potential practical importance in Naval applications
involving signature detection; the longer a given pattern persists, the more likely it is to be detected, or to
interact with other hydrodynamic events.


In both cases, the question naturally arises as to how general are the findings from towed spheres. We
will briefly review some findings [4] showing that details of the bluff body shape are unimportant in the late
wake, and that the only quantity of interest is the net momentum flux, which is related directly to the drag
force. All mean and turbulence quantities can then be collapsed using published bluff-body drag coefficients.
Examples are given in figures 1 and 2, where body geometries vary from streamlined slender bodies to disks
and cubes.


Figure 1: Normalised wake width Figure 2: Normalised centreline velocity


The lack of sensitivity of late-wake dynamics to initial conditions bodes well for successful numerical
modeling of these flows.


Thus far, all of the drag wakes can be characterised by the self-similar profiles of mean streamwise-
averaged velocity with cross-stream distance, UX(y), where it is reasonable to suppose that turbulence is







being driven by the mean shear, ∂U/∂y, and one might then wonder what would happen if there were no
such mean shear profile (see figure 3). One of the more important Naval applications, the self-propelled
body, is such a case. Moreover, the most general geophysical application might have no net momentum in
the horizontal, such as a patch of turbulence that is isotropic in longitude and latitude. Recent work on the
particular case of zero-momentum wakes will be reviewed and discussed, and examples can be given where
no general collapse of the data is possible (figure 4).
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Figure 3: Mean (solid) and r.m.s. (open) ve-
locity profiles in momentumless wakes for Nt =
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Figure 4: Maximum r.m.s velocity fluctuations for
different geometries: slender bodies in solid sym-
bols and cylinders in open symbols


Finally, a quantitative and predictive understanding of transport of momentum, energy or information
depends on both vortex and wave modes. In mid- to late-wakes, the vortical modes are almost time-invariant,
and internal waves provide a mechanism for propagation of momentum/information at comparatively rapid
time scales. Combined experimental and theoretical studies show the success and limitations of linear wave
theory in accounting for body and wake-generated internal waves.
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Numerically it is widely observed that horizontally scattered pancake vortices are dominant structures
in strati�ed turbulence (Kimura & Herring; 1996, Riley & Lelong; 2000). Those two–dimensional structures
contrast signi�cantly to vortex tubes often observed in homogeneous isotropic turbulence. Various statistical
properties, such as di�usion, may well have a close relation with such structures in strati�ed turbulence. One
of the fundamental properties of pancake vortices is that these strong enstrophy regions are strong vertical
shear regions, and this is veri�ed by checking the direction of vorticity vectors in these regions. Figure 1 is


the polar angle distribution of vorticity vector de�ned as θ = cos−1
[


ωz/
√


ω2
x


+ ω2
y


+ ω2
z


]


at two di�erent


times.


We can clearly observe that vorticity vec-
tors tend to be horizontal with strati�ca-
tion. (The conditional PDF with strong
enstrophy shows this fact more clearly. )
The ow is strongly anisotropic, but its
degree of anisotropy tends to saturate as
N → ∞.


The paper by Fincham et.al (1996) ad-
dressed the question of why under stably
strati�cation large scale (vertical) vor-
tices can not be produced. They conjec-
tured that the strong shear bends vortex
lines horizontally and keeps them from
connecting strong vertical vorticity re-
gions. Our observation certainly sup-
ports their conjecture.


     
 


 
 


 


       
 
  


Figure 1: Polar angle distribution of vorticity vector for
strati�ed turbulence of various degrees of strati�cation(N 2 =
0, 1, 10, 100) at two times (left; t = 5, right; t = 10). After
Kimura & Herring (1996).


Although the existence is established, the mechanism of production of pancake vortices still seems an
open problem. When a pair of vortex columns or a dipole is present initially in a strati�ed ow, recent
investigations have clari�ed that new types of vortex instability(such as zigzag) is developed to make the
vortex deformed into layers (Billant & Chomaz; 2000). This is de�nitely a nice scenario for producing
pancakes. But an important point is that the pancakes have been observed also in the simulations with
random initial conditions in which no coherent structures exists initially. In this talk, we would like to
propose another possible scenario for producing pancakes from random initial conditions.


Our starting point is existence of vortex shear layers in strati�ed turbulence. Previous simulations (Métais
& Herring 1989) and experiments (Fernando 1988) veri�ed the existence of vortex sheets that extend in the
horizontal plane as typical manifestation of two-dimensionalization of strati�ed turbulence. As we have
already introduced, Fincham et.al (1996) conjectured the so-called vortex network among the vortex layers
in stably-strati�ed turbulence. Along with this conjecture, they proposed the several possible connections
of vortex lines. Numerically, all categories of connections have been observed (Kimura & Hering; 1996).


One typical connection observed numerically is that in which vortex lines go back and forth between a
positive and a negative vorticitiy region making a loop. This loop is repeated several times as if they formed







a coil of vortex lines or an assembly of vortex rings. In the paper, we proposed that a coiling vortex lines
induces a strong jet penetrating the coil (Kimura & Hering; 1996).


If a jet due to vortex coiling
is ever possible, we could expect
that a strong local horizontal ve-
locity exists which pulls and drives
the parts of nearby vortex sheets.
In our recent strati�ed turbulence
simulations (5123), we observed a
lot of double-decker pancakes in
the ow (Herring et.al 2005). In
Figure 2, we show one example
of such pancake (horizontal view).
The up and down pancakes are not
completely parallel, but if they are
looked from the above, we see they
have a similar size. The corrobora-
tion of the scenario as well as the
lifetime of double-decker pancakes
are still open.


Figure 2: A double-decker pancakes (enstrophy contour level surface)
from positive and negative x-direction


This is a joint work with Jack Herring. I would like to thank him for continual encouragement and
enlightening discussions.
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Percolation effects and coherent structures in two dimensional
turbulent flows
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Essential deviation of transport processes in turbulent fluids and plasma from classical behavior leads to a
necessity of search for new approaches and scaling laws. This paper deals with the relationship between the
scalings based upon fractal and percolation concepts of turbulence [1][2]. The renormalization methods of
quasi-linear equations in anisotropic mediums are considered.


It is shown that the Corrsin conjecture about the diffusive nature of decorrelations appears to be the basis
for such a renormalization. The problem of relation between the Lagrangian correlation function and the
Eulerian one is considered in anisotropic medium. The effectiveness of Corsin’s randomization to describe the
transport of particles for the model with zonal flow is demonstrated. The common character of correlation
approximation for the models of Corrsin’s, Taylor-McNamara’s is discussed.


The Dreizin-Dykhne model, the Kadomtsev-Pogutse method, and double diffusion are investigated in
detail. The analysis is made of “returns” effects role and memory effects. The relation between the description
methods of transport in systems with convective cells and percolation method is considered.


The description methods of the strong longitudinal correlation effects are analyzed [3][5]. The fractional
differential equation describing transverse transport in the model with strong longitudinal correlations is
obtained. Using the Euler correlation function in the power form


C(x) ∼ x−a


allows us to obtain the relationship between the Hurst exponent H and the correlation exponent a. Obtained
expression points out the more slowly rate of correlation decay for superdiffusive regimes. This result is in
agreement with an analogous scaling law for isotropic medium [1][2].


The power form of the correlation function allows us to use the percolation methods [5]. However, in the
framework of monoscale percolation it is impossible to describe complex anisotropic effects. There is another
way to investigate correlation effects and hierarchy of scales in the framework of multiscale percolation [4].
In that approach drift effects play a main role, this differs strongly from the Kolmogorov approach for the
description of scale hierarchy.


The influence of correlation effects on the limit of applicability of multiscale graded percolation is con-
sidered. In that theory the correlation function of the velocity scales as l − a. On the other hand, fractal
theory leads to the scaling


l ∼ tH..,


where H is the Hurst exponent. A close examination of fractal and percolation concepts allows us to obtain
not only the value of exponent, but also the relationship between H and a. This result is in agreement with
the scaling law from the quasilinear approach [4] [5].


Correlation effects for the Manhattan grid model (the generalized Dreizin-Dykhne model) for H = 2/3
are investigated. The generalization of double diffusion on isotropic case for H = 2/5 is considered. These
models allow us to interpret the superdiffusion behavior in self -organized criticality and subdiffusion one in
transport barriers.







The renormalization method of a small parameter is reviewed in continuum percolation models [2][4].
It is suggested to modify the renormalization condition of the small parameter of the percolation model in
accordance with the additional external influences superimposed on the system. This approach makes it pos-
sible to consider simultaneously both parameters: the characteristic drift velocity Ud and the characteristic
perturbation frequency w. The effective diffusion coefficient D is proportional to w1/7


D = Const w1/7


that satisfactory describes the low-frequency region w, where the long-range correlation effects play a signif-
icant role. The character of the dependence of Deff on the drift flow amplitude Ud in different regimes is
analyzed [4][5].
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The stability of a vortex tilted with respect to the stratification has been studied the-
oretically and experimentally. A new instability has been observed when a vortex is
tilted , whatever its vorticity profile. A shadowgraph picture reveals the emergence of co-
rotating structures in two distinct strips arranged symmetrically on either side of the vortex.


Figure 1: instability on a tilt vortex: initial moment Figure 2: instability on a tilt vortex: final moment


Theoretical study
The basic flow solution of a vortex slightly tilted with respect to the vertical can be
obtained in the limit of small inclination angles. The solution is searched in the form U
= Uo + α*U1 + ... , where α is the inclination angle and Uo is the unperturbed straight
vortex solution. Expanding the Euler equations under the Boussinesq approximation with
respect to small parameter α we obtain the first order correction in polar coordinates :


• ~U1 = r∗Ω3


Ω2−N2 ∗ sin(θ) ~z Ω : angular velocity


• ρ1 = − r∗Ω2


Ω2−N2 ∗ cos(θ) N : Brunt− V äisalafrequency


We clearly see on these expression that tilting is responsible for the apparition of an
r-dependant axial velocity and its associated variation of density. But the striking result of
this analysis is that a singularity appears when N ≤ Ω. It can be smoothed by viscosity
with a classical C.L analysis ( see Drazin & Reid ). In a 0(Re−1/3) neighborhood of rc,the
critical point, the solution is obtain as:


• ~U1 = Real(− i
2ε ∗


rc∗Ωc
Ω′c ∗Hi(−i ∗ r̃) ∗ eiθ)~z with r̃ = ( r−rc


ε ) and ε = ( 1
2∗Re∗Ω′c )1/3


Where Hi is a generalysed Airy function ( see Drazin & Reid) also called Score function
Thought the apparition of a critical layer , α is responsible for a strong shear. We think
that the observation correspond to the destabilization of this axial shear flow with respect
to a K-H like instability.
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Figure 3 : theoretical axial velocity, θ = 0
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Figure 4 : theoretical axial velocity, θ = π/2


Experimental study
To validate theoretical results we have undertaken PIV measurements and shadowgraph
visualisations. We present here vertical cross section PIV measurements for two different θ.
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Figure 5 : experimental axial velocity, θ = 0
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Figure 6 : experimental axial velocity, θ = π/2


Those measurements confirm the existence of a thin layer where the velocity strongly varies.
A strong azimuthal dependance of this flow is also observed. Qualitatively those results
are in agreement with theoretical predictions. The evolution of vorticity, obtain by PIV, is
plotted below.


−800 −600 −400 −200 0 200 400 600 800


−800


−600


−400


−200


0


200


400


600


800


Figure 7 : azimuthal vorticity: initial moment
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Figure 8 : azimuthal vorticity:final moment


We clearly see from those measurements that the azimuthal vorticity, which is initially
uniformly distributed along the vortex axis tend to form an alley of co-rotating vortices.
This processus of accumulation of vorticity in points regularly spaced is the signature of
the K-H instability. This point of view is also supported by the shadowgraph picture of the
phenomenon.


A new mechanism leading to instability has been discovered and explain. This mechanism
is very general and expected to affect any tilted vortex. However the consequences of this
instability on mixing or internal waves remains to be quantified.
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A better understanding of the Coriolis force’s influence on the atmosphere and ocean of Earth and gaseous
planets is an important fundamental problem. It is also crucial for the improvement of the parameterizations
of turbulent mixing and subgridscale processes in numerical models of geophysical flows. It is generally
accepted that rotation does significantly affect the nonlinear behavior of the flow even if it only appears in
the linear part of the Navier-Stokes equations. This subtlety is the root of the difficulty in one’s study of
rotation effects on turbulent flows.


The Rossby number Ro is the dimensionless ratio of inertial effects to the Coriolis effect: Ro = U/2LΩ,
where U and L are the characteristic velocity and length scales respectively and Ω is the rotation rate of
the frame. If sufficiently rotated (i.e. Ro →0) the flow’s velocity components become independent of the
rotation axis direction by the Taylor-Proudman theorem [1] (T-P). In other words, T-P theorem states that
the slow dynamics is two-dimensional. Other important rotation effects on homogeneous three-dimensional
turbulence can be summarized as follows:


• Inhibition of the energy cascade [2]


• Propagation of internal waves of frequencies ω ∈ [0, 2Ω], where 2D coherent structures (such as Taylor
columns) are the characteristic surfaces of the zero frequency “wave”, ω = 0 [1]


• Finally, a strongly rotating initial isotropic three-dimensional flow develops an anisotropy, suggesting
a transition from 3D to 2D state [3].


In our work we study the mechanisms of the transition of the flow as Ro →0, starting from isotropic
conditions. In a rotating frame, the inviscid Navier-Stokes equations are nondimensionalized using the
rotation timescale Ω−1:


∂u


∂t
+ Ro(u · ∇u) + z × u = −∇p


The normal modes of the corresponding linearized, inviscid equations and the wave number k form an
orthonormal basis. The associated eigenvalues are the wave frequencies:


ω±(k) = ±kz/|k|


Here kz is the vertical component of the wave-vector k and Ω = Ωz. Thus, the system involves waves with a
wide range of frequencies and slow “vortical” motion. In such a multiple scale problem, the only important
interactions are the resonant ones, which reduces the energy dissipation. The vanishing coupling coefficient
of the resonant interactions between one 2D mode (ω = 0) and two inertial wave modes (kz 6= 0) implies a
decoupling of the slow 2D modes from other degrees of freedom as Ro →0. Waleff’s 1993 analysis [4], predicts
a preferential transfer of energy to large, non-vortical, vertical scales in this decoupled limit. Mahalov and al.
[5] theorems depict a different image, where rapid rotation freezes vertical wave energy transfers. According
to Cambon and al.’s [6] proposed theory based on non-resonant interactions, all modes stay coupled due to a
wave-vortex interaction that remains active even at large rotation rates. In other words, the exact decoupling







does not exist. The forced direct numerical simulations done by Smith and Waleff in 1999 [7](SW99), show
a strong energy transfer to large scale cyclonic vortices. This is in contradiction with decoupling theories.


We present our direct numerical simulations results and analysis. Different rotation rates are introduced to a
fully developed three-dimensional turbulent flow. Different resolutions are used in order to test the influence
of the domain’s size on the ability of the model to capture important resonant and near-resonant interactions.
We show that the results of Chen and al. [8] are in agreement with both the decoupled dynamics and the
state of transition observed in SW99. Finally, the decoupled limit theories are discussed in light of our
obtained results.
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A pair of co-rotating vortices is an elementary flow that occurs in shear layers and small-scale tur-
bulence. Atmospheric and oceanic conditions such as turbulence and density stratification can influence the
dynamics of these vortices. This study investigates the effect of stable stratification on the development of
the vortex pair, and in particular, on the two-dimensional merging process and three-dimensional instability
which may occur in this flow.


High resolution numerical simulations of a pair of parallel horizontal co-rotating vortices in a uniform
vertical stably stratified fluid are performed. We consider the effect of the Reynolds number, which indicates
the relative significance of convective to viscous effects, and the Froude number, which indicates the relative
significance of convective to buoyancy effects. In order to investigate the three-dimensional instability, small
amplitude velocity perturbations are added to the initial field.


Results of two-dimensional simulations for unstratified flow are consistent with previous studies [1, 2]
and show that the basic merging process consists of three phases: the viscous phase, the convective phase,
and the diffusive phase. During the viscous phase (figure 1a), the two vortices rotate about each other while
the separation distance remains relatively constant and the core size grows at a constant rate (figure 2).
The duration of the viscous phase increases with Reynolds number. The convective phase begins (figure 1b)
when the vortex core reaches a critical size and the separation distance, b, begins to decrease. Analyzing the
vortices in the rotating frame reveals the existence of two ’ghost vortices’ with rotation in the opposite sense
to that of the primary vortices [1]. These ghost vortices lead to the formation of filaments which deform the
primary vortices and cause the vortex centers to approach each other (figure 1c). The diffusive phase occurs
once the vortices have merged and viscosity acts on the single vortex.


The presence of stable stratification promotes the merging process (figure 1d-f). This is indicated in
figure 2 by the earlier onset of the reduction in the separation distance. As the flow stirs the fluid, horizontal
density gradients are established which generate axial vorticity of opposite sign through baroclinic torque.
As indicated in figure 1d-f, two patches of baroclinically generated vorticity develop and flank the primary
pair. During the viscous phase, the eccentricity of the primary vortices (evaluated using the second moment
of vorticity) reveals that the baroclinic torque constrains the deformation of the vortex pair whereby the
mean state of the relaxation process differs for different levels of stratification. The secondary flow associated
with the baroclinic torque enhances motion of the vortices towards each other and results in an earlier onset
of the convective phase. In the case of strong stratifcation (low Froude number, not shown), the baroclinic
torque significantly alters the ghost vortices and causes the primary vortices to shed their filaments.


In the three-dimensional (perturbed) simulations, an elliptic instability occurs in flows with sufficiently
high Reynolds number. This was previously observed in experiments [3] and also shown through linear stabil-
ity analysis and numerical simulations [4]. The instability is associated with the ellipticity of the streamlines
in the vortex cores that is due to the strain induced by one vortex on the other. For large Reynolds numbers,
the viscous phase is longer and the vortices remain separate thereby allowing the instability to develop. The
introduction of stratification to the flow reduces the time before merger (viscous phase), thereby hindering
the development of the instability. Therefore, the instability of the flow does not develop to the extent of
unstratified flow. Details will be presented in the poster and in an accompanying presentation [5].







(a) Fr = ∞, t∗ = 3.375


(d) Fr = 5, t∗ = 3.375


(b) Fr = ∞, t∗ = 5.25


(e) Fr = 5, t∗ = 5.25


(c) Fr = ∞, t∗ = 6.0


(f) Fr = 5, t∗ = 6.0


Figure 1: Axial vorticity for unstratified (Fr = ∞) and stratified (Fr = 5) flow.
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Figure 2: Time development of (a) vortex separation distance, b, and (b) vortex core size, a. Symbols: ’4’
Re = 3460, Fr = ∞; ’◦’ Re = 3460, Fr = 5; ’×’ Re = 5000, Fr = ∞; ’∗’ Re = 5000, Fr = 5; ’?’ Re = 6500,
Fr = ∞; ’¦’ Re = 6500, Fr = 5.
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Abstract


A uniformly sheared turbulent flow subject to system rotation is studied by means of large-scale direct
numerical simulations (DNS). The rotation has a significant effect on the stability of the flow, the momentum
transfer and turbulence structures. The effect of rotation on the turbulent scalar transport in uniformly
sheared flows is studied as well. It is shown that rotation has a strong influence on the rate and the direction
of the scalar transport and this has important implications for modelling.
Introduction


Three-dimensional turbulent shear flows in the atmo-
sphere and the ocean are regularly affected by the ro-
tation of the Earth. Small-scale turbulence advected
by eddies experience similar effects as flows subject
to system rotation.
In a recent study by Brethouwer (2005) it is shown
that rotation has a strong effect on the stability and
the structure of rapidly sheared turbulent flow as well
as on the scalar transport in this flow. In this study a
uniformly sheared turbulent flow subject to rotation
about the spanwise direction is investigated through
DNS but now at a lower shear rate. The flow ap-
proaches the equilibrium state which is relevant for
geophysical flows. The flow geometry and the direc-
tion of rotation are sketched in figure 1. At the same
time, we study the transport and dispersion of a pas-
sive scalar in this flow with an imposed mean scalar
gradient in the x3-direction.
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Figure 1: The flow geometry with the mean velocity
profile and the direction of rotation.


The main objective of the study is to answer the following questions:
• how does rotation affect the stability of the flow and momentum transfer?
• what is the influence of rotation on the interaction between the large and small scales and
on the turbulence structures?
• what is the effect of rotation on turbulent scalar transport in shear flows and what are
the implications for modelling?


Direct numerical simulations


The numerical method follows Rogallo’s (1981) approach. The computational grid is moving with the mean
flow and is periodically remeshed. A pseudo-spectral method with periodic boundary conditions is applied to
solve the governing equations. High resolutions with 1536×1280×1024 grid points are used in the simulations
and consequently, the flow and scalar field are well resolved and the periodic boundary conditions have little
influence on the results. Isotropic turbulence is used as initial conditions and several simulations are carried
out with different rotation numbers R = 2Ω/S, where S is the shear rate and Ω the rotation rate.







Results and discussions
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Figure 2: Time development of the turbulent kinetic
energy. Thick lines: DNS; thin lines: linear fits.
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Figure 3: Time development of the angle of the scalar
flux vector.


The time development of the turbulent kinetic energy at different rotation numbers R = 2Ω/S is presented
in figure 2. At R = 0 (no rotation) the turbulent kinetic energy grows exponentially for intermediate times,
which agrees with existing observations, but at larger St values the growth is linear and this is an unexpected
result. At R = −0.5 the kinetic energy grows much faster than at R = 0 and at R = 0.25 it is almost constant.
Rotation thus stabilizes or destabilizes a turbulent shear flow. This is because the rotation alters momentum
transfer and hence the transfer from the mean flow to the turbulence. In Brethouwer (2005) it is shown that
the rotation also affects the anisotropy of the turbulence and the turbulence structures.


The present DNS data offer a unique possibility to address in much detail the effect of rotation on
transport processes in turbulent shear flows. It is well known that the mean scalar flux vector uiθ, where
ui and θ are the velocity and scalar fluctuation respectively, is not aligned with the mean scalar gradient in
turbulent shear flows. In figure 3 the time development of the angle αθ of the mean scalar flux vector with
the coordinate system is shown. Here the angle is defined as


αθ = tan−1(u3θ/u1θ).


The scalar flux is down the mean gradient, which is the assumption of a gradient diffusion model, if αθ =
−90o. In the non-rotating case R = 0 the angle αθ reaches an equilibrium value of about −30o at larger St
values implying a large scalar flux component in the flow direction. At R = −1/2, αθ is significantly smaller
and at R = −1, αθ ' −90o and thus the mean scalar flux vector is aligned with the mean scalar gradient
in this case. We can conclude that rotation has a remarkable influence on turbulent passive scalar transport
and in particular on the direction of the transport.


A much used model for the turbulent scalar flux is the gradient diffusion model


uiθ = − νt


Sct


∂Θ
∂xi


where νt and Sct are the turbulent viscosity and the turbulent Schmidt number respectively and ∂Θ/∂xi


the mean scalar gradient. It is assumed that Sct is of order one. From the DNS we obtain that Sct = 0.73
at R = 0, Sct = 0.63 at R = 0.25 and Sct = 0.09 at R = −1 at larger St values.


¿From the present DNS it can be concluded that rotation has a strong effect on momentum transfer and
transport processes in turbulent shear flows. It will be challenging to develop models which correctly take
into account the influence of rotation on momentum transfer and scalar mixing.


———————————
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The linear stability to three dimensional disturbances of classical vortex configurations is investigated
through a numerical and theoretical analysis in the case of a stratified fluid.


For strong stratification, recent studies have showed the existence of a new three dimensional “zigzag”
instability for a pair of counter-rotating ([1]) and co-rotating ([3]) vertical vortices. This zigzag instability
consists in a differential displacement of the vortices with practically no internal deformation and could
explain the emergence of coherent horizontal pancake vortices organized in decoupled horizontal layers.


In a strongly stratified fluid, a general explanation of zigzag instability based on slow bending Kelvin
wave of columnar vortices was recently proposed ([2]). By means of an asymptotic analysis in the limit of
small vortex cross-sectional area and long wavelength perturbation, this approach was successful in describ-
ing the zigzag instability in the cases of a pair of co-rotating and counter-rotating vortices.


In this contribution, we extend this theory to two other classical vortex configurations: the Karman
Vortex Street of staggered vortices and the symmetric vortex street (Fig. 1). A numerical linear stability
analysis is also carried out and fully confirms the theoretical predictions. In strongly stratified fluids, the
stability of vortex arrays is largely modified compared to the homogeneous case ([4]) and the main features
of zigzag instability are preserved. The most unstable wavelength is found to be proportional to bFh, where
b is the distance scale between the vortices and Fh the horizontal Froude number (Fh = Γ/πa2N with Γ the
circulation of the vortices, a their core radius and N the Brunt-Väisälä frequency). The maximum growth
rate is independent of the intensity of the stratification and only proportional to the strain S = Γ/2πb2. The
numerically observed modes are also in excellent agreement with the expected ones and correspond to slow
vertical bendings of the vortices (Fig. 3).


This study may explain the observations of spontaneous layering made on strongly stratified grid turbu-
lence by [5] and [6].
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Figure 1: Vortex arrays configurations
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Figure 2: Zigzag instability of a Von Karman vortex street with κ = h/b = 0.281. Plots of the non-
dimensional growthrate 2πb2σ/Γ as a function of the rescaled vertical wavenumber kzbFh. 4 and 5 symbols
show the growth rates given by a numerical simulation for two different values of Fh: Fh = 0.2 and Fh = 0.4
respectively. The dash-dotted line represents the inviscid prediction obtained by an asymptotic analysis.
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Figure 3: Contour of the vertical vorticity of the base state (a) and of the perturbation of the zigzag instability
(b) for kzbFh = 15.47 and Fh = 0.2. Shaded region indicate positive value. A domain restricted to only two
vortices is represented as the perturbation is periodic in the x direction.
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Experiments on trailing vortices performed by Leweke & Williamson [1] in unstratified flows have shown
the existence of a short-wavelength instability for which the antisymmetric mode is preferentially selected.
The three-dimensional instabilities of these counter-rotating vortices have been largely investigated in the
litterature [2],[3]. Numerical and experimental works have shown good agreement for the wavelength and
the growthrate of these instabilities. However, the selection of the antisymmetric mode is not completely
understood.


We investigate the three-dimensional instabilities of a Lamb-Oseen vortex pair, of circulation Γ, of radius
a and with a separation distance b, by performing a temporal linear stability analysis. Since the basic state
is symmetric in the streamwise direction, the modes separate in symmetric and antisymmetric part. The
figure 1 represents the growth rates of these modes when t → ∞ for different axial wave numbers ky and for
a Reynolds number based on the circulation Γ close to the inviscid limit.
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Figure 1: Nondimensional growth rate σr2πb2/Γ of symmetric (triangles) and antisymmetric (circles) modes
as function of the nondimensional wavenumber kya for ReΓ = 105. Continuous line is the theory of Le Dizès
& Laporte [4].


We observe several instability bands. The first band, between kya = 0 and kya = 0.34, is the Crow symmetric
instability, with a maximum at the wave number kya = 0.2. The second band of instability, from kya = 0.5
to kya = 1.7, not observed by Sipp & Jacquin [2], which exists for both the symmetric and antisymmetric
modes, is oscillatory and appears for a sufficiantly high Reynolds number. Figure 1 shows three other bands,
with maxima at kya = 2.26 and kya = 3.96, that are well predicted by the theory of Le Dizès & Laporte [4]
and correspond to the short-wavelength elliptic instability. We notice that growth rates of symmetric and







antisymmetric modes are very close, with symbols on top of each other.
To explain the preferential selection of the antisymmetric mode observed by Leweke & Williamson [1],
we consider the optimal perturbations of the symmetric and the antisymmetric modes which maximize the
energy gain at short times. The figure 2 displays the evolution of this amplification factor for both symmetries
as a function of time at the first maximum of the elliptic instability kya = 2.26 and for ReΓ = 2000.
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Figure 2: Amplification factor of the symmetric (deep lines and triangles) and antisymmetric (thin lines
and circles) modes as function of time for different initial conditions. Dashed lines : initial condition is the
direct eigenmode. Continuous lines : initial condition is the adjoint eigenmode for the energy norm, which
is the initial condition that maximizes the energy at large times. Dots : optimal perturbation at each time
as initial condition.


At large times, the optimal gain of the antisymmetric mode is larger than the one of the symmetric mode.
At short times, the gain obtained by the direct-adjoint technique [5] is very similar between both modes but
the spatial distribution of the perturbation is strong inside the core for the antisymmetric modes whereas
it is located outside the core for the symmetric modes. This later property may explain the experimental
observations.


Further investigations on the dynamics of trailing vortices in stratified fluids will be performed. Indeed,
as such dipoles propagate downwards, they evolve under the influence of the stratification of the atmosphere.
This unsteadiness of the flow makes standard stability theory ineffective whereas the optimal perturbations
are still well defined and will allow us to analyse the dynamics of this unsteady flow.
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Particle Imaging Velocimetry techniques have been extensively used for two-dimensional measurements of
a wide variety of flows and are now standard techniques used in many laboratories. As most fluids of
practical interest exist in a 3D space, the extension of these techniques to three dimensions is a logical
and expected progression. Full field volumetric measurement gives access to all the velocity derivatives
allowing for the direct measurement of viscous dissipation and the evaluation of 3D vortex topology. The
strong anisotropy present in late time stratified flows proves to be a distinct advantage for the application
of these techniques and can be exploited to allow for resolution of all components of velocity and vorticity.
Careful application of new scanning velocimetry techniques has allowed for detailed, time-resolved, three-
dimensional measurements of a variety of stratified flows. These measurements have, for late times, confirmed
the persistence of a balanced state between horizontal advection and vertical diffusion, that leads to a self
similar evolution of the flow structures. For example, the relatively well known stratified dipole, most of
the time assumed to be quasi two dimensional, is revealed to have a complex three dimensional vortex
topology arising from its self induced propagation. As the buoyancy scale approaches zero, the dynamics
of such structures are dominated by the horizontal velocity field, whereas the diffusion if mainly vertical.
The subsequent evolution is then governed by an effective Reynolds number based on vertical diffusion and
horizontal advection. At late times, the vertical diffusion tends to balance the shearing due to horizontal
advection, which leads to a stationary like structure associated with a constant effective Reynolds number.
An extensive series of high Reynolds number towed grid turbulence experiments have also been carried out in
a stably stratified fluid, with and without rotation. Applying these scanning imaging velocimetry techniques
has provided time resolved velocity fields and their derivatives in volumes of several cubic meters. In the
presence of background stratification, the turbulence generated by the grid quickly collapses under gravity
and the flow is predominantly horizontal. Without rotation, the flow develops into a sea of pancake-like
structures separated by highly dissipative horizontal vortex sheets, which are responsible for almost all of
the energy dissipation. The subsequent evolution of the flow is shown to be independent of the Froude
number and is also governed by the effective Reynolds number. At late times a stationary state is reached
and the effective Reynolds number again remains constant. Some details of the measurement techniques and
their application to Internal waves and smaller-scale non-stratified flows will be discussed.
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We study the restratification of the oceanic surface mixed layer that results from lateral inhomogeneities in
the surface density field. Mixed layer models are quite successful at reproducing the deepening of the mixed
layer, but the restratification phase is not as well understood and model bias is especially large when there are
horizontal variations in the density field. These lateral inhomogeneities give way to ageostrophic baroclinic
instabilities which slump the horizontal density gradients under the effect of rotation. These mixed-layer
instabilities (MLI) differ from ocean interior instabilities because of the weak surface stratification, and the
fact that their lower ’boundary’ is a density jump in the transition layer between the mixed layer and the
ocean interior. Spatial scales are 0(1-10) km and growth rates are faster than a day. We use both linear
stability analysis and fully nonlinear simulations to study the impact of MLI on mixed layer restratification.
Finally we discuss the issue of parameterization of MLI-driven restratification in mixed layer models.


[Restratification of the Ocean Water Column]


Consider the stability of the upper ocean water column. Its instability is dominated by two distinct
modes: an interior instability with wavelength close to 2π/3 times the internal deformation radius (≈ 60km)
and a mixed-layer instability (MLI) peaking at wavelength close to 2π/3 times the ML deformation radius
(≈ 1.5km). The interior instability has a spatial structure (inset) spanning the whole thermocline depth and
represents the mesoscale restratification due to quasi-geostrophic baroclinic instability [1]. The MLI (inset)
is confined to the ML and represents restratification due to ageostrophic instability of the upper 200 m [2].


Figure 1: The linear instability of the upper 1000m


of the ocean water column. The basic state is com-


posed of a 200m deep ML with N ≈ 4 × 10−4s−1,


Uz = 2 × 10−4s−1, and Ri= 3.6 sitting on a 800m


thermocline with N ≈ 4×10−3s−1, Uz = 2×10−4s−1


and Ri = 360. For comparison, shown in red is


the instability of the 800m ocean interior alone with


a rigid lid replacing the ML. Also shown are the


amplitude versus z of the fastest growing interior


and mixed layer modes, and the inverse deformation


radii.


MLI and interior modes roughly agree with the Eady model. They possess exponential edge waves
trapped to the top and bottom of their domain. When these edge waves interact, a linear instability results.
Both instabilities extract available potential energy stored in the horizontal density gradients, resulting in
restratification. MLI differ notably from those in the thermocline because of the weak stratification (Ri=O(1),
ageostrophy) and the presence of a moving interface at the base (a tilting base provides a topographic β-like
effect).







[Nonlinear Geostrophic Adjustment]
Finite-amplitude, nonlinear aspects of MLI development allow the direct study of eddy mixing and


restratification rates that may be utilized in parameterizations. We consider the geostrophic adjustment of
initially-vertical density surfaces in a 200m×25km×50km channel (representing a section of the ML after
the passage of a storm or isolated convective event).


Figure 2: Snapshots of geostrophic adjustment and instability. Total density difference: 0.008 kg/m3.


Initially, the density surfaces drop gravitationally into an inertial oscillation about the state where
ρzf/ρ2


y
≈ Ri ≈ 1 (see [3]). The first two snapshots show the range of this oscillation in our simulation.


However, this oscillating state is not stable to 3-dimensional disturbances, i.e., MLI. Initially they grow
as Eady-like waves much as predicted by the preceding analysis and with the ageostrophic growth rates (see
[2]). Day 8.5 above shows these waves nicely. The waves extract available potential energy from the mean
stratification and drive a slumping/restratification of the initial front.


The restratification is enhanced as the waves reach finite amplitude and begin to nonlinearly interact
strongly. The fully nonlinear waves are shown at day 25 above. Note that their length-scale has increased
dramatically, as expected from an inverse energy cascade.


The following figure shows the restratification process for a weak front (0.1K/10km) and a strong front
(0.5K/10km). Note the initial inertial oscillations and the significantly stronger restratification that occurs as
the MLI develop. The effect of restratification by MLI may be roughly parameterized by a Gent-McWilliams
parameterization [4]. However unlike in the ocean interior where a diffusivity of O(1000 m2/s) is appropriate,
O(10-100 m2/s) is better for MLI. Even with decreased diffusivity, the implied magnitude of MLI’s vertical
eddy heat flux is significant compared to other mixed layer processes (e.g., diurnal-average surface fluxes
and entrainment O(100)W/m2).


Figure 3: Eddy statistics from two nonlinear calculations with different initial front strength.


[Conclusions]
MLI are ubiquitous in mixed layers with lateral variations in density. They are small in scale O(1-10km),
fast-growing O(≤ 1 day), ageostrophic, do a large share of the restratification, and parameterizable via a
Gent and McWilliams diffusivity O(10 − 100 m2/s) .
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Mixing processes in the upper ocean affect large-scale dynamics by setting the rates at which heat and
momentum are distributed downward from the surface. In coastal regions, vertical turbulent transports also
have significant biological implications, bringing nutrients from the seafloor into light-rich waters near the
surface. This study attempts to measure vertical fluxes of heat and momentum in 16 m of water south of
Marthas Vineyard, Massachusetts (figure 1) and to use those measurements to infer something about the
physical structure of flux-carrying turbulent eddies. In particular, we are interested in the effects of four
potentially important mechanisms of generating turbulence: shear instability, convection, wave breaking, and
Langmuir circulations. We have made high frequency (20 Hz) measurements of velocity and temperature
using ADVs and fast-response thermistors at a nominal depth of 2 m below the sea surface. In addition,
we have measurements of surface fluxes of heat and momentum measured in the bottom boundary layer of
the atmosphere (ABL), as well as measurements of density and velocity throughout the water column from
microcats and ADCP.


One aim of this study is to determine whether the upper ocean behaves like the lower atmosphere and
whether theories developed to describe turbulence in the ABL can be applied to the surface boundary layer
of the ocean (OBL). In particular, under what conditions is turbulence in the upper ocean dominated by
shear and convective instabilities in the same way as in the lower atmosphere? Our observations were made
during the autumn of 2003 as part of the CBLAST experiment. During this time the ocean was cooling and
was often well-mixed. In order to maintain sensitivity of the velocity measurements, observations are limited
to times of small waves (less than 1.5 m), so the effects of breaking waves may be limited.


Surface gravity waves contaminate the turbulence measurements and lead to anomalously high measured
heat and momentum fluxes. The initial challenge is determining a suitable way to separate wave information
from turbulent information. Attempts to use filters similar to that described by Shaw and Trowbridge (2001)
have been unsuccessful at removing the wave contamination from the measurements, so we have examined
here the low frequency behavior of the turbulence, at frequencies below the wave band.


Kaimal et al. (1972) developed an empirical model to predict shapes for turbulent cospectra in the ABL
which we are testing in the OBL. The shapes are dependant on the mean flow speed of the fluid (U), the
depth of measurement (z), and the Monin-Obukhov length (L). In addition, the magnitude of the spectrum
is set by the magnitude of the flux of either heat or momentum. The equation below describes the model
prediction of the cospectrum of temperature and velocity perturbations.


CoT ′w′(f) = T ′w′ F (f, U, z,
z


L
).


Here T ′ and w′ represent respectively the temperature and vertical velocity perturbations from 20 minute
means. Frequency is denoted by f , and the overbar represents a time-average. A similar equation describes
the model cospectrum of vertical and horizontal velocities.


We have estimated fluxes by adjusting the covariance parameter of the model so that the model fits our
data at low frequencies (see figure below). Those estimates are sensitive both to the applicability of the
model and to our ability to measure accurately fluxes explained by low frequency motions.


The top panel below shows spectra of vertical velocity directly from measured velocities (solid), and
inferred from the pressure spectrum assuming linear surface waves (dashed). All spectra are for a single 20







minute burst centered at 2110 EST on October 11, 2003. The influence of waves is evident in the frequency
band between 0.07 Hz and 0.6 Hz. In the bottom panel are shown cospectra of vertical and horizontal
velocities. At high frequencies noise in the pressure sensor causes the dashed line to assume large values not
thought to represent surface waves. The solid line is again the data, and here the dashed line represents the
theoretical prediction of Kaimal et al. (1972). At low frequencies the observed and modeled cospectra agree
reasonably well, but in the wave band the u′w′ cospectrum shows the dramatic effect of the surface waves
in obscuring the turbulent signal. The vertical line shows the waveband cutoff used for model fitting.


10
−3


10
−2


10
−1


10
0


10
1


10
−8


10
−6


10
−4


10
−2


10
0


10
2


S
w


w
 (


m
2
/s


2
/H


z
)


data


lin. waves from pressure


10
−3


10
−2


10
−1


10
0


10
1


−0.2


−0.15


−0.1


−0.05


0


0.05


C
o


 u
ʼw


ʼ 
(o


C
m


/s
/H


z
)


True frequency (Hz)


U = 0.136 m/s


data


Kaimal et al. model


Figure 1: Spectra of vertical velocity (top), and cospectra of vertical and horizontal velocity (bottom). See
text for explanation.


Both the model of Kaimal et al. and our observations suggest that for momentum flux, significant
covariance is explained by low frequency motions. The model fitting for heat flux is less convincing, although
it still appears that most of the energy is in the low frequencies. Assuming Taylor’s frozen turbulence
hypothesis, large turbulent eddies (meters in size) are thus responsible for the vertical transport of heat
and momentum. Integrations of u′w′ cospectra at frequencies below the wave band give fluxes of similar
magnitude to the fluxes determined by fitting the Kaimal et al. model, suggesting that the procedure of
fitting the model to data gives reasonable estimates of the momentum flux. The comparison for heat flux is,
again, less favorable.


The agreement between low frequency spectral shapes of the model and observations suggests that much
of the turbulent flux of momentum, and possibly of heat, is driven by processes common to both the
atmospheric and oceanic boundary layers. Under the small-wave conditions that we have examined, shear
turbulence and convective turbulence may dominate in the ocean as they do in the atmosphere.
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Inverse cascade drives 2D Navier-Stokes, or quasi-inviscid (Eulerian) �uids to large scale organized (co-
herent) states through vortex mergers [1]. The resulting quasi-equilibrium (for suitable geometries and
boundary conditions) often takes the form of a vortex dipole [2]-[4]. Such states were predicted long ago by
�statistical�(entropy) theories of 2D turbulence, both for point vortices (vortex gas) and continuous/patch
vorticity [5]-[7].


Furthermore, statistical theories predict special "stream-vorticity" relations of the resulting station-
ary �ow, which includes among others so-called sinh-Poisson equation, whereby stream �eld  (x; y) and
vorticity � (x; y) obey the relation:


� = 52 = A sinh ( )


Later such �stream-vorticity�relation was produced in numeric simulations of relaxing Navier-Stokes [2], and
�quasi-inviscid��uids [3]-[4].


The sinh-Poisson equation is closely connected to some known integrable (soliton) models (sin-
Gordon), and allows large classes of exact analytic solutions, that we loosely name �vortex solitons�. Many
families of single- and double- periodic �solitons�were found over the past few years [8]-[10], but their stability
properties, and �physical/numeric realization�remained largely open. In fact, more is known about stability
of single periodic vortex arrays (e.g. [11]).


In all known cases, sinh-Poisson stream-function is given by  = 4 tanh (�), in terms of a suitable
�phase-function�� (x; y). In a �single-periodic case�(Mallier �Maslowe type [8]) � is made of trigonometric
functions of x; y, while �double-periodic case�involves Jacoby elliptic functions ([9]-[10]).
We shall discuss relaxation dynamics of �quasi-invicsid�2D �ows, their �soliton-type�equilibria in di¤erent


geometries (double-periodic and channel), and their stability properties. Analytic double-periodic sinh-
Poisson �ows consist of one-parameter families of vortex dipoles, labeled by Jacobi modulus 0 < k < k0.
The modulus gives a degree on nonlinearity of vortex dipoles, strongly nonlinear for large k � k0, descending
to a �linear�(Fourier-mode) equilibria as k ! 0. In papers [3]-[3] we examined several families of double-
periodic perturbed vortex solitons using a semi-Largangian (quasi-inviscid) advective code of D. Gurarie. So
far we found only one dynamically stable dipole family, the so called sn-sn dipole ([3]), with �phase-function�


� =


p
k [sn (rx; k)� sn (ry; k)]
1 + ksn (rx; k) sn (ry; k)


; r =


r
A


1� 6k � k2


over the range of moduli: 0 � k < 3 �
p
8. All other examples were found to maintain their pattern


over a short period of time, but then undergo a rapid transition to a �sn-sn�dipole state, typically of low
modulus k.


Next we conducted Arnold stability analysis of vortex solitons [4], based on hamiltonan formulation
of the ideal Euler �uid, and its conserved integrals (energy, moments of vorticity). It revealed most known
dipole families to be stable for the entire admissible range of moduli.


The discrepency between two predictions (dynamic stability vs. Arnold stability) should not be
surprising, as they pertain to di¤erent �ow types: �ideal (non-physical) Euler�vs. �numeric quasi-inviscid�
�uid.







The study of Arnold spectra reveals certain similarities between di¤erent soliton types, pertaining to
their dynamic (quasi-inviscid) relaxation. It also suggests some peculiar �conservations properties�of quasi-
inviscid �ows. To unravel their true meaning and signi�cance, howver would require further analysis and
experimentation.


The talk will outline some known examples of �vortex solitons�, explain the semi-Lagrangian code
used for numeric simulations, demonstrate their dynamic relaxation patterns and Arnold stability, and
conclude with a few open problems posed by our study and future prospects.
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Results of the flow inside a precessing cylinder are reported. The flow is analysed through sideview
visualisations and through velocity measurements using Particle Image Velocimetry (PIV). At low angles of


precession, the flow is stable and presents the features of Kelvin modes, in agreement with the linear
theory. At large precession angles, the flow is found to destabilize, giving rise to very turbulent and


intermittent structures.


The flow inside a precessing cylinder is primarily interesting since it is representative of the flow inside
the liquid core of the earth, and thus might be reponsible for the geodynamo. It has also aeronautical
applications since it is found in the reservoir of rotating spaceship. And finally, it is also interesting for
geophysical vortices since it can represent the interaction of a tilted vortex with the ground. The physical
mechanisms exhibited on a simple experiment of a precessing cylinder could thus be extended to these more
realistic and complex applications.


In this experiment, a cylinder rotating around its axis is mounted on a rotating turntable, with an angle
between the two axis. The cylinder of diameter D = 9.2 cm has an aspect ratio close to 1 and can rotate
up to an angular velocity ω1 = 600 rpm. The precessional frequency can be varied up to ω2 = 60 rpm. The


Figure 1: Vorticity measurements in a cross-cut section, showing a Kelvin mode of the second kind.







(a) (b)


Figure 2: Sideview visualisations using Kalliroscope particles of unstable resonances with (a) 3 half wave-
lengths and (b) 5 half-wavelengths.


flow can be visualized using Kalliroscope particles in a sideview, as was previously done by McEwan (1970)
and Manasseh (1996). We have also measured the instantaneous velocity fields in a cross-cut section of the
cylinder through PIV measurements. For this purpose, a camera was mounted on the rotating platform and
the particles were illuminated by a luminous sheet.


Theoretically, the Kelvin modes (or inertial waves) of the cylinder are excited by the precessional forcing,
when they are stationnary in the frame of reference of the rotating platform. The amplitude of these Kelvin
modes is found to diverge when the Kelvin mode has an odd number of half-wavelengths inside the height of
the cylinder. These resonances are obtained for certain ratios of precessional frequency to angular velocity
of the cylinder. Such a resonance is shown in Figure 1, where four lobes of vorticity are found inside the
cylinder. This indicates that it is the second Kelvin mode, in agreement with the theoretical prediction for
this ratio ω1/ω2 = 1. This behaviour is obtained for low precessional angles (smaller than 1 degree).


When the precessional angle is increased, the flow is found to destabilize and becomes non stationnary.
The Kelvin modes are advected by the main flow, creating a spiral of vorticity. When the precessional angle
is too high (larger than 5 degrees), the flow becomes strongly turbulent, sometimes interrupted by some
relaminarisation phases. Such turbulent flows are illustrated in Figure 2, by visualisations at various ratios
of precessional frequency to angular velocity of the cylinder. Even though such a complex flow cannot be
predicted by the theory, the wavelength of the flow is equal to the wavelength of the diverging Kelvin mode
at these resonances. It indicates that this Kelvin mode is responsible for the destabilisation of the flow, and
may be analyzed theoretically using a triadic resonance of Kelvin modes.


To conclude, the experimental investigation of the flow inside a cylinder shows that the structure predicted
by the linear theory fails when the precessional angle reaches one degree. More experimental datas will be
necessary, for the mechanism of the destabilisation of the flow to be understood.


———————————


References


[1] Mc Ewan, A. D. 1970. Inertial oscillations in a rotating fluid cylinder, J. Fluid Mech. 40, 603 – 640.


[2] Manasseh, R. 1996. Nonlinear behaviour of contained inertia waves, J. Fluid Mech. 315, 151 – 173.


[3] Kobine, J. J. 1996. Azimuthal flow associated with inertial wave resonance in a precessing cylinder, J.
Fluid Mech. 319, 387 – 406.







GTP Workshop on
Coherent Structures in Atmosphere and Ocean
at NCAR, 11-14 July 2005, Boulder, CO, USA


Shear turbulence parameterization in a model of thermohaline
intrusions


Rachael Mueller,1 Bill Smyth,1 Barry Ruddick,2
1College of Oceanic and Atmospheric Sciences, Oregon State University, 104 Ocean Admin. Bldg.,


Corvallis, OR 97330
2Department of Oceanography, Dalhousie University, Halifax, N.S., CANADA B3H 4J1


Thermohaline interleaving is an important mechanism for laterally fluxing salt, heat, and nutrients be-
tween oceanic water masses. Interleaving is driven by a release of potential energy resulting from the vastly
differing diffusivities of heat and salt in seawater. The flows are composed of stacked intrusions that flux
more buoyant and less buoyant water in opposite directions. We investigate the role of shear instability
(caused by this juxtaposed motion) on intrusion growth (Figure 1).


The model first described by Walsh and Ruddick [1] is upgraded to include a parameterization of shear
induced turbulent mixing based on direct numerical simulations. The resulting density profiles more closely
simulate observational data. Initial results indicate that shear instability significantly affects intrusion dy-
namics and reduces lateral fluxes.


Figure 1: Schematic showing the mechanisms in-
volved in diffusively driven interleaving. The hy-
pothesis explored here is that shear instability exerts
a significant braking force that governs the ultimate
strength of the interleaving motions.
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Introduction Models for large-scale geophysical flows typically involve hierarchies of approximations,
where each level is valid in some particular asymptotic regime of a larger parent model. Such model hierar-
chies are usually not unique, and models have to be assessed on the basis of their accuracy, their regularity,
and their long-time behavior. With accuracy we mean the ability of the reduced model to shadow trajecto-
ries of the parent model with suitably prepared initial data. However, accuracy is not sufficient for effective
modeling and computation. The development of small amplitude fast oscillations, for example, may not
affect accuracy with respect to a physically relevant norm, but may pose severe problems for a numerical
scheme. Thus, we wish that the model produces as smooth solutions as possible without sacrificing accu-
racy. Finally, numerical studies are often carried out beyond the time where trajectory accuracy is lost, for
example, as part of an ensemble forecast study. Thus, the model should maintain basic invariants such as
mass or energy over very long time scales.


Geophysical flows are, to a good approximation which we will not discuss here, non-dissipative systems
with a Hamiltonian structure. For systems of this type, regularity without loss of conservation can be
achieved through smoothed velocity advection, i.e. by advecting potential vorticity by a regularized flow. The
prototypical example are the Lagrangian averaged Euler equations [2, 3]. Good long-time behavior is often
tied to the preservation of Hamiltonian structure under the approximation, suggesting the use of variational
asymptotics as has been pioneered in the context of the shallow water equations by Salmon [4, 5]. We
explore the issue of regularity and long-time behavior in Hamiltonian model reduction paradigmatically in
one of the simplest models for geophysical fluids, the rotating shallow water equations, using a modification
of Salmon’s procedure that exposes the freedom inherent in this type of asymptotics, and show that this
freedom can be used to achieve reduced models with higher order regularity in the aforementioned sense [6].


In the following, we briefly explain the main idea—model reduction by degenerate variational asymptotics.
A rigorous analysis of the method can be achieved in a finite dimensional toy abstraction of near-balanced
flows [1]. We believe that the concept is applicable in much more general settings. This, as well as the
numerical verification in the fluid context, is the direction of ongoing work.


Variational asymptotics for shallow water Salmon [5] proceeds in two steps. He initially constrains
the Hamiltonian phase space to the submanifold defined by geostrophic motion. The resulting system is
called the L1 equations. In a second step, he introduces a near-identity change of variables that, when only
keeping terms to the same consistent asymptotic order, yields a simpler system in canonical coordinates, the
large-scale semigeostrophic (LSG) equations which, unfortunately, are mathematically ill-posed.


We are motivated by the question whether Salmon’s idea of using truncated transformations into conve-
nient coordinates can be generalized in a way that does not necessarily lead to ill-posed models. The crucial
observation is that we do not need to constrain the dynamics explicitly—we can let consistent truncation to
a certain asymptotic order do all the work: If, by means of a clever choice of transformation, the truncated
system degenerates, so-called Dirac constraints will appear naturally. If all we need is a reduced set of
equations, we do not even have to compute constraints explicitly.







In the following, uε denotes the fluid velocity in physical coordinates, and u the velocity in a new, yet-
to-be-determined, coordinate system. Correspondingly, hε denotes the layer depth in physical, and h the
layer depth in the new coordinates. Then the full semigeostrophically scaled shallow water Lagrangian reads


Lε =
∫ [


R ◦ ηε · η̇ε + 1
2


ε |η̇ε|2 − 1
2


hε ◦ ηε


]
da . (1)


The continuity equation is encoded in h−1 ◦ η = det ∇η, and the flow η has an associated vector field via
η̇ = u ◦ η, with corresponding definitions for the quantities with ε subscript. The change of coordinates is
expressed by the transformation ηε = ξε ◦ η. At this stage, the fundamental objects are still the flow maps
η and ηε, and there is no truncation to some order of ε yet. The crucial point is that we can regard ξε as
a flow in ε, and associate with it a vector field vε via ξ′


ε = vε ◦ ξε, where ξ0 = id and the prime denotes a
derivative with respect to ε.


The task is now to systematically expand all quantities in the “old” Lagrangian Lε in powers of ε. The
computations are most easily written in terms of the Taylor coefficients of the Eulerian vector fields uε and
vε, which we denote by u, u′, u′′, etc. In this procedure, v, v′, and their higher order cousins can be chosen
by us, and we use this freedom to impose degeneracy at each relevant order of the expansion.


A lengthy, but straightforward computation yields Lε = L0 + ε L1 + O(ε2), where


L0 =
∫ [


R ◦ η · η̇ − 1
2 h ◦ η


]
da and L1 =


∫ [
v⊥ · u + 1


2 |u|
2 + 1


2 h ∇ · v
]
◦ η da . (2)


It is immediately clear that any choice of the form v = 1
2 u⊥ + F (h) will render L1 affine. For simplicity, we


restrict ourselves to the one-parameter family of transformations v = 1
2 u⊥ + λ ∇h. It is now easy to insert


this choice into the Lagrangian and compute the equations of motion, for details see [6].
When λ = 1


2 , we recover Salmon’s L1 dynamics, and λ = −1
2 yields the LSG equations. When λ = 0,


the resulting u–h relation is an elliptic operator with non-constant coefficients,
[
1 − 1


2
ε (h ∆ + 2 ∇h · ∇)


]
u = ∇⊥h , (3)


and the potential vorticity reads q = (1 + 1
2


ε ∆h)/h, so that


(q − 1
2


ε ∆)h = 1 . (4)


The remarkable consequence is that now potential vorticity inversion “gains” three derivatives, the maximum
possible for first order models of this type. Two derivatives are gained by inverting (4), and one derivative
is gained through the inversion (3).


We conclude that the λ = 0 case resembles the regularity type of the two dimensional Lagrangian
averaged Euler equations [3, 2]. Although these equations are, in principle, equally difficult to solve as the
L1 equations, we expect that the built-in non-dissipative smoothing will make the new model numerically
much better behaved.


———————————
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Vortices are very common features of the Earth’s atmosphere and oceans. Vortices of anomalous potential
vorticity (PV) indeed often dominate the fluid motion. Two simple models have been used to study vortex
interactions in these environments. Two-dimensional vortex interactions between co-rotating and counter-
rotating vortices have been studied in [1] and references therein. Three-dimensional quasi-geostrophic vortex
interactions have been studied in [2] and references therein. These studies focused on simple situations where
certain symmetries in the initial conditions were assumed. Here, we consider more general, asymmetric
interactions. We examine the interaction between two co-rotating vortices of unequal PV. The interaction
depends on 5 parameters: the vortex volume ratio, the height-to-width aspect ratios, the vertical offset and
the potential vorticity (PV) ratio. The parameter space is large, thus we need an efficient method to deal
with the size of the problem. We first use the Ellipsoidal Model (ELM) that models vortices as ellipsoids
of uniform PV, and filters high-order non-ellipsoidal deformations. First, we determine equilibrium states,
then we determine the margin of stability of these states. At this margin, we analyse the energy, the angular
impulse, and the enstrophy of the flow. Finally, we examine the outcome of unstable interactions solving
the full quasi-geostrophic equations with the ’contour-advective semi-Lagrangian’ (CASL) algorithm.


The QG equations are


Dq
Dt


=
∂q


∂t
+ u · ∇q = 0, (1)


∆ψ =
∂2ψ


∂x2
+
∂2ψ


∂y2
+
∂2ψ


∂z2
= q and u = (−∂ψ


∂y
,
∂ψ


∂x
),


where q(x, y, z, t) is the PV, ψ is the streamfunction, and u=(u, v) is the horizontal velocity. Here, z has
been scaled by N/f , the ratio of the buoyancy frequency to the Coriolis frequency. We use the Ellipsoidal
Model (ELM) described in [3] to determine equilibrium states at the margin of stability. Because of the size
of the parameter space, we focus on vortices having aspect ratios consistent with what is actually observed
in turbulence, 0.2 < h/r < 1.6, see [4]. We study vertical offsets between the two vortices in the range 0
to 80% and consider various PV ratios as well as volume ratios. Furthermore, we examine the nonlinear
interaction between the marginally unstable vortices using the ‘contour-advective semi-Lagrangian’ (CASL)
algorithm, see [5].


We have considered 500 cases with vortex aspect ratios h1/r1=h2/r2=0.4, 0.6, 0.8,1.0, 1.2, relative vertical
offsets ∆z/(h1 + h2) = 0.001, 0.2, 0.4, 0.6, 0.8, and PV ratios q1/q2=0.2, 0.4, 0.6,0.8,1.0. We determine
steady states in each case for various horizontal separation distances. We find the critical gap δc between the
innermost edges of the vortices (i.e. the gap below which vortices are unstable) for each case as described
in [6]. An example is given in Figure 1(a). Before the margin of stability all the modes are neutrally stable,
i.e. their growth rates are zero. At the margin of stability, the energy (shown as the thin line) reaches
a maximum at the critical gap δ = δc. There, one frequency becomes zero and the growth rate becomes
non zero (this is called an exchange type instability). For decreasing δ, the growth rate increases and the
energy decreases, see Figure 1(a). We have found that the minimum critical gap (i.e. the minimum vortex
separation) occurs for a PV ratio of unity for almost all parameters investigated. An example is shown in
Figure 1(b). In Figures 1(c),(d) and 2, we examine the nonlinear interaction between two vortices having







h1/r1 = h2/r2=0.8 and ∆z/(h1 + h2)=0.2. In Figures 1(c) and (d), for q1/q2=20, the (dark) vortex with
high PV dominates the interaction and the other vortex with low PV is slowly destroyed. Note that this
interaction creates a ring around the high-PV vortex and the original shape of this vortex changes little.
In Figure 2, for q1/q2=4, the volume of the high-PV increases by incorporating material from the low-PV
vortex. The latter loses 35% of its volume.
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Figure 1: (a) The frequencies σ obtained from the lin-


ear stability analysis plotted versus the gap δ for q1/q2=2.


The growth rates are zero for all modes except for one,


exhibited in the lower left hand corner, for δ < δc = 0.63.


The vertical line indicates the margin of stability. (b) The


potential vorticity ratio q1/q2 versus the critical gap δc.
Figure 2: Top left: Initial conditions. Top right: Late


time state for two unstable vortices having V1/V2=0.05 and


q1/q2=20. Bottom: As above, V1/V2=0.25 and q1/q2=4.


In conclusion, the most important finding is that strong interactions (e.g. merger) between vortices
having the same or nearly the same PV occur at the closest separation distances. Other PV ratios result in
strong interactions from greater separation distances. This means that vortices having relatively weak PV
have less chance of surviving in a general turbulent flow than do vortices having the peak or near peak PV
in the flow. Such weak vortices will be preferentially eliminated in such an environment.
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The study of mixing as a process in which two or more segregated objects become a new homogeneous
product, has applications in areas ranging from the ocean and atmospheric sciences (e.g. climate predictions)
to biomedical applications (e.g., mixing at the microscale). Similarly, the study of ergodicity using the notion
of average residence time has impact in diverse settings.


The cat map (Arnold’s “Cat” map) on the torus (unit square with the sides identified) given by


x′ = 2x + y mod 1 y′ = y + x mod 1 (1)


is a standard example of a mixing map and since mixing implies ergodicity, it is also an ergodic map. As
seen in Figure 1 (from www-chaos.umd.edu/misc/catmap.html), the cat map is an area preserving map that
stretches the initial coordinates and then folds them back into the original phase space.


Figure 1: Cat Map


Despite the frequent occurrence of ergodicity and mixing in a wide range of settings, the problem of
measuring the property is still unresolved and there is no universal method for quantifying the phenomena
[1]. Moreover, in many situations the phenomena occur on a wide range of scales and as such, modelling
accurately continues to be challenging. For example, mixing in complex fluid flows, often occurs at a small
scale which makes it more difficult to capture accurately in a model using the usual techniques, such as the
energy (or L2) norm [5]. In addition, the issue of comparing mixing rates of different processes or fluid flows
presents a problem.


A multiscale approach based on classical ergodic theoretical concepts is posed here to assess the degree
of ergodicity and mixing in fluid flows. The approach is exposed in the context of simple examples of maps.
The scaling analysis is achieved using wavelets and is introduced with the Haar wavelet. A wavelet basis is
a natural choice because wavelets can focus on transient and localized properties with a zooming or scaling
analysis procedure [2], and in particular, wavelets have had success in the study of coherent features [3].
Furthermore, this wavelet-based measurement of mixing and ergodicity can be used to develop a metric for







comparison of fluid flows in terms of their mixing and ergodicity characteristics, in particular in the context of
2-dimensional geophysical fluid flows. Motivation for the need for such a measure can be seen in the following
figures showing the familiar “spaghetti plot”(from www.rsmas.miami.edu/LAPCOD/research/2004d/) at
different scales. As the scale increases the extent of mixing and ergodicity changes.


Figure 2: “Spaghetti plot” Figure 3: “Spaghetti plot” at scale s=1


Figure 4: “Spaghetti plot” at scale s=2 Figure 5: “Spaghetti plot” at scale s=3


This research builds on work started by Kuznetsov et al., e.g., [4], and is supported by the National
Science Foundation and the Office of Naval Research.
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Convection is responsible for the vertical transport of heat and momentum in the planetary boundary
layer of the atmosphere, and consequently plays a central role in weather and climate. Current climate
models do not adequately capture the physics of convection since this phenomenon occurs on spatial scales
smaller than those resolvable by the models. A possible resolution to this problem lies in an alternative
approach which aims at extracting the macroscopic behavior of the atmosphere from the statistics of the
microscopic motion via a theory based on the Boltzmann kinetic equation.


The Boltzmann kinetic equation describes the evolution of a single-particle density distribution function,
f(x, c, t), where f(x, c, t) is the probability to find a particle at position x with velocity c at time t [1]. The
evolution is given by


∂f


∂t
+ c · ∇f =


1
τ


(feq − f) . (1)


where the left-hand side represents the free streaming particles and the right-hand side is an approximation
which expresses the tendency for collisions to bring the distribution function toward some local equilibrium
over a characteristic time scale, τ [2]. The local equilibrium distribution is Maxwellian,


feq =
ρ


(2πRT )D/2
exp


[
(c − u)2/2RT


]
, (2)


where ρ is the density, u is the macroscopic velocity, T is the temperature, R is the gas constant and D is
the number of spatial dimensions. This approximation, known as BGK for Bhatnagar-Gross-Krook [2], is
valid as long as molecular collisions dominate energy transitions. Since this is the case in the troposphere
[3], this is a good starting point for describing atmospheric convection.


This approach to convection is an exciting alternative to those based on the conventional Navier-Stokes
equation because the Boltzmann equation is a many-body description of the atmosphere; Consequently, it
is well suited for using techniques from many-body theory, including the celebrated renormalization group
(RG) [4]. The basic idea of the renormalization group is that degrees of freedom in a scale invariant system
are removed via a systematic course graining and rescaling of the equations describing the system. The
result of this procedure is a macroscopic description of a system which explicitly takes into account the
microscopic dynamics. Applying RG transformations to a convective system in the inertial subrange (the
scale invariant regime where the energy cascade occurs) would result in statistics on a scale that can be
incorporated into large-scale general ciruculation models (GCMs). This approach has already been applied
to model turbulent flow in complex geometries [5], and thus has already exhibited potential as a viable
alternative to the Navier-Stokes equation.


In general, a kinetic theory approach has several advantages to the conventional Navier-Stokes equation.
One is that it is possible to incorporate complex physical processes and geometries. Also, as a numeric
procedure, discretization is straightforward [6, 7] and the Boltzmann method is computationally efficient on
parallel processors.


Using a kinetic theory approach to describe atmospheric convection would require the synthesis of several
techniques that have already been developed in the context of modeling complex fluids at the kinetic level. For
instance, even in the simplest case of dry convection, it is necessary to account for thermal transport. Several







methods have been developed to model a fluid with a varying temperature field; the most recent even includes
effects from viscous dissipation [8]. It is also important to incorporate the multiple components and phases
associated with moist convection. This too has been done successfully within the context of the Boltzmann
equation [9]. Perhaps one of the most challenging aspects is to account for the effects of latent heating.
One possible solution to this problem might be to include an additional temperature field that couples to
the moist air and condensate components of the model. The additional component would represent the
temperature change due to evaporative cooling or latent heat release. Adding this to the temperature field
that is advected with the fluid would yield the actual temperature of the system. Incorporating these facets
along with RG considerations could potentially result in a model capable of producing macroscopic statistics
of atmospheric convection, based on the microscopic dynamics.


Though the current state of this work is speculative, I am optimistic that applying a kinetic theory
approach to atmospheric convection will constitute significant progress not only in the understanding of the
mechanisms governing convection, but in the ability for GCMs to adequately incorporate the effects of this
small scale phenomena on a large scale.
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Aim
The aim of this work is to explore the properties of shallow water turbulence on a sphere over a wide range
of Froude and Rossby numbers. A new method is then applied to decompose the resulting flows into their
balanced and imbalanced components. This highlights the central role played by the potential vorticity field
and gives some insight into the nature of imbalance.


Introduction
Atmospheric motion can be broadly categorized into two types: ‘balanced’ vortical motion and ‘imbalanced’
wave motion. Observations suggest that the atmosphere is in a state of near-balance, that is, inertia-gravity
waves do not make a significant contribution to the overall flow. Instead, the large scale motion is dominated
by the distribution of an approximately materially advected tracer called potential vorticity (PV). However,
despite its central role, this field is not well resolved in traditional numerical models due to the excessive
dissipation required to filter out fast wave motion.


In this work, we apply the CASL algorithm [1] to the shallow water equations on a sphere. These equations
are the simplest to permit both types of atmospheric motion described above. They can also, in the absence
of diabatic effects, be rearranged to show material conservation of PV. This conservation property is exploited
by the CASL algorithm by the use of contour advection. This allows the PV field to develop sharp gradients
and filamentary structure - important characteristics that are not resolved in other models [2]. Also, the
underlying balance of the flow is used to motivate a new choice of variables that separate, to leading order,
the balanced and imbalanced motion. This greatly enhances accuracy ([4], [5], [3]).


A typical case
Over one hundred simulations, spanning the Fr-Ro parameter space, have been run. Although the proper-
ties of the flows differ throughout the parameter space, there are some general characteristics that can be
identified. As described in previous work [6], we observe that coherent structures form out of the random
initial conditions. These structures merge and migrate polewards to form a polar vortex. There is also a
large scale equatorial wave present in most of the runs. These features can be seen in figures 1, 2 and 3
which show the time evolution of the PV field for a moderately turbulent case (Fr=0.4, Ro=1.2).


Figure 1: t=0 Figure 2: t=10 Figure 3: t=20


Wave-vortex decomposition
The method used to diagnose the balanced and imbalanced components of the flow at a given time t is called
‘optimal’ PV (OPV) balance. It is an iterative procedure consisting of a series of backward and forward
integrations of the full equations over a given diagnostic time period. Further details are given in [7]. The
fields produced by the OPV balance procedure are then compared and contrasted with the results produced
by the first two members of the δ - γ hierachy [5].







Figure 4: OPV balanced field Figure 5: OPV imbalanced field


Properties of turbulence
The most interesting aspect of this work is that the large number of simulations allows us to draw some
general conclusions about the nature of turbulent flows throughout the Fr-Ro parameter space. In particular,
we observe that flows stay close to balance, even at large Froude number where wave motion is expected
to become more important. This is illustrated below by the contour plots over Fr-Ro parameter space of
the average amplitude of the depth field over the sphere during the first 10 days of each simulation. Figure
4 shows this for the depth field obtained by the OPV balance procedure and figure 5 is the equivalent for
the OPV imbalanced depth fields. Note that the average amplitude of the imbalance remains small, even at
high Froude number.
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In the ocean’s strati�ed interior, motions on scales of 0.1-10 km are typically associated with internal
waves, small-scale vortices (also called the vortical mode), and other small-scale features. As internal waves
propagate, eventually they encounter conditions that lead to instabilities, and hence wave breaking. These
sporadic events produce diapycnal mixing which results in the formation of localized well-mixed regions of
uid, which under the combined e�ect of gravity and rotation, may undergo a Rossby-like adjustment. This
gives rise to a vortex structure composed of a central anticyclone, anked by two weaker cyclones above
and below (e.g., [1], [2]). The superposition of many such events occurring randomly in space and time in
the ocean can lead to an e�ective lateral dispersion by eddy stirring. Here we examine such stirring for
parameters relevant to the strati�ed waters over the continental shelf.


Geostrophic momentum scaling and a simple random-walk formulation can be used to obtain order-of-
magnitude estimates for the e�ective horizontal di�usivity that would result from the stirring due to this
process ([3]). For a series of mixing events and a prescribed mean vertical di�usivity, the maximum di�usivity
is predicted to occur for events with horizontal scales comparable to the internal Rossby deformation radius
and vertical scales large enough to ensure that the adjustment of the anomalies is geostrophic. Under these
conditions, the predicted horizontal di�usivity due to vortical mode stirring is given by


κh ≈
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1
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)


h4∆N4
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=
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κz , (1)


where N is the local buoyancy frequency, ∆N 2 is the change in N2 caused by diapycnal mixing (such that
∆N2 = N2 implies complete mixing), f is the Coriolis frequency, L and h are the horizontal and vertical
event scales, φ is the frequency of events, R = ∆Nh/f is the deformation radius associated with the mixing
events, κz is the cumulative vertical di�usivity due to mixing events, and �B is the background (presumably
molecular) viscosity. For values appropriate to the coastal ocean, the lateral di�usivity predicted by this
scaling ranges from κh ≈ (1 to 10) m2 s−1, consistent with values estimated from dye-release experiments
conducted over the continental shelf.


We used numerical simulations of lateral stirring by a random vortical mode �eld generated by the
relaxation of diapycnal mixing events to verify the parameter dependence predicted by (1) (Fig. 1, [4]). A
signi�cant �nding of our work is that the numerical results agree with the above scaling to within a constant
scale factor. Moreover, the most energetic vortices are produced by the adjustment of strati�cation anomalies
with radial scales comparable to the internal Rossby radius of deformation, suggesting that these are likely the
most e�ective at generating lateral stirring. Another major result is that there exists an additional parameter
regime in which vortical-mode stirring becomes even more e�cient than can be accounted for by (1). This
regime is characterized by strongly nonlinear interactions between the vortices, and an energy cascade to
large scales, which signi�cantly enhances the e�ective lateral stirring. One signature of this cascade is a
characteristic k−5 horizontal kinetic energy spectrum, similar to that reported by numerous investigators for
two-dimensional turbulence with coherent structures. The onset of the inverse energy cascade appears to
be correlated with strong nonlinear interactions between individual vortices. A condition for the transition
to this regime is that mixing events must be densely populated, either by occurring very frequently or by
lasting a long time, or both. In practice, this occurs when fh2/�B = 0.01.







An important consequence of the existence of this strongly nonlinear regime is that, while the above
scaling does well in the weakly nonlinear case of isolated mixing events, it may under-estimate the dispersion
in the strongly nonlinear regime because it does not take into account strongly nonlinear dynamics such
as vortex interactions and hence the observed inverse energy cascade. A revised parameterization for the
strongly nonlinear case is thus needed. In the open ocean, it has been shown that the inverse cascade becomes
ine�ective beyond the Rhines arrest scale, i.e., typically no more than 10 external Rossby radii. However,
in the coastal ocean, we hypothesize that such a cascade will be arrested by other large-scale shearing and
straining processes long before it reaches the Rhines scale. Whether or not this is the case, and how it would
a�ect the parameterization in the strongly nonlinear regime remain to be shown.


Figure 1: Time evolution of model fields from numerical simulations of vortical mode stirring. Rows from


top to bottom: plan views of (1) Ertel PV with (u,v) velocity vectors overlaid, (2) density anomaly, (3) dye


concentration. Time increases from left to right in each row, and is given as inertial periods at the top of


the figure. Domain size is 500 x 500 m in plan view.
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We consider the theoretical problem of rectification, the generation of non-zero mean flow from a forcing
with zero mean, specifically the time mean flow response of a barotropic fluid subject to a vorticity forcing
that is localized in space and oscillatory in time. The emergence of the mean flow is a result of non-linear
terms producing finite time mean fluxes (Reynolds stresses) of momentum and relative vorticity, whose
convergences and divergences act as a driving force for the time mean flow. Interest in the problem was
originally motivated by its relevance to the dynamics that drive the deep recirculation gyres observed with
the eastward jet extensions of western boundary current systems such as the Gulf Stream and Kuroshio.
One hypothesis for the driving of these deep recirculations is through the action of energetic surface eddies
as localized sources and sinks of vorticity by acting like plungers of Ekman pumping velocity. In addition,
the problem has more general application in the understanding of eddy-mean flow interaction, serving as
the contrasting limit to that of spatially broad (basin-scale) time-dependent forcing and relevant given many
sources of ocean eddies are intermittent in space.


The work extends earlier studies of eddy-driven mean flow from localized forcing, specifically a series
of laboratory experiments by Whitehead [1] and numerical simulations by Haidvogel and Rhines [2]. The
former served as the first experimental demonstration of the generation of mean zonal currents from localized
periodic forcing, whereas the latter, a numerical study of the response of a homogeneous ocean to forcing
by a localized wind patch with an oscillatory wind stress curl, demonstrated that the field of Rossby waves
generated by such a forcing produced a time mean circulation consisting of two counter-rotating recirculation
gyres west of the forcing. The present work seeks to extend these earlier studies by: 1. testing whether
localized oscillatory Ekman pumping in a closed basin as considered numerically by Haidvogel and Rhines
produces the same steady-state circulation pattern in the laboratory; 2. testing whether the strength and
pattern of the steady-state flow are functions of various parameters of the forcing (such as forcing amplitude,
frequency and length-scale); and 3. attempting to explain any observed dependence of the mean flow on
forcing parameters in terms of dynamical or mechanistic arguments. To achieve these aims laboratory
experiments, numerical simulations and analytical analysis were conducted.


The laboratory experiments were designed to reproduce the numerical experiments of Haidvogel and
Rhines and examine the steady-state circulation pattern of a barotropic fluid forced by a localized source of
oscillatory Ekman pumping velocity. The important result was the demonstration that both 1. the steady-
state response of a real fluid to this form of forcing is indeed a circulation consisting of a pair of counter-
rotating gyres; and 2. the rectified flow strength and pattern is a function of various forcing parameters.
The velocities of the jet and gyres were observed to change as forcing parameters were varied, increasing
with the scale of the nonlinear term and with the amplitude of the forcing. In this latter case, a qualitative
change in behavior was observed as forcing amplitude was increased, with mean flow strength increasing
rapidly initially and then becoming saturated beyond a critical value. The rectified flow pattern was also
observed to be sensitive to forcing parameters. In particular, the meridional extent of the recirculation gyres
was observed to vary with forcing amplitude, frequency and the magnitude of the beta effect.


The numerical simulations were designed to facilitate access to quantitative measures of the dynamical
quantities of interest with the aim of developing an understanding of the rectification mechanism and the
observed dependence of mean flow properties on forcing parameters. This was achieved by seeking solutions
numerically to the forced barotropic quasi-geostrophic potential vorticity equation with a forcing function
that was oscillatory in time and Gaussian in space, intended to model the vorticity forcing supplied by the







Ekman pumping in the laboratory experiments. The important results were 1. to provide some dynamical
insight into the rectification mechanism; and 2. to illuminate a means by which to relate the forcing
parameters to the mean flow properties. Reynolds stresses of zonal momentum were observed to be directed
systematically toward the forcing region, producing a momentum flux convergence in the forced zone (acting
as a positive eddy force and hence accelerating an eastward zonal flow) and flux divergences north and
south of the forcing (acting to accelerate a westward mean flow). The pattern of the time-mean Reynolds
stresses of vorticity, a systematic up-gradient turbulent flux of vorticity in the forcing region producing a
flux convergence in the northern half and a flux divergence in the southern half of the forced band, similarly
provided insight into the dynamical mechanism. Assuming an eddy Sverdrup balance (mean planetary
advection forced by the divergence of the Reynolds stresses of vorticity, the dominant balance for small
amplitude forcing) the zonal integral of this pattern of vorticity flux divergence produces a time-mean
circulation pattern of recirculation gyres similar both qualitatively and quantitatively to the fully nonlinear
solution.


Exploiting this insight into a picture of mean flow generation by the relative vorticity advection of the
forced wave field, a better understanding of the relation between forcing parameters and rectified flow was
sought through the consideration of an analytical solution for the forced wave field. Seeking this solution in
terms of an expansion in the amplitude of the forcing provides a framework by which to connect the second
order mean flow to forcing by the time-mean Jacobian (relative vorticity flux divergence) of the first order,
linear forced wave field, and hence various analytical solutions to the linear forced Rossby wave equation
were considered. The significant result was that a Green’s function solution (i.e. approximating the spatial
dependence of the forcing function by a delta function as considered by [2] and for which a closed form
analytical solution exists) produces a symmetric pattern of vorticity flux divergence that does not produce
rectified flow outside the immediate vicinity of the forcing. To obtain a pattern of vorticity flux divergence
whose zonal integral is consistent with the two gyre circulation pattern that extends to the western boundary,
a forcing function with finite spatial extent is required. The lesson learned is that it is necessary for the
forcing to have a finite length scale in order to generate rectified flow in the far field. This is significant
because it implies that the mechanism that is generating the rectified flow is occurring inside the forcing
region and not by the waves in the far field.


Work on the problem is ongoing and there are a number of interesting questions currently under inves-
tigation. Included among these is a resonant response that is observed for forcing frequency, length scale
and the magnitude of beta in parameter studies conducted with the numerical model, believed to be caused
by a matching of the two sets of length scales in the problem (those excited by the forcing function and the
set of natural length scales of the Rossby wave free modes, a function of the forcing frequency and value of
beta as dictated by the dispersion relation). Arguments based on matching these length scales may provide
a possible method of explaining the observed mean flow strength dependence on forcing length scale and
frequency that has been seen in both the laboratory experiments and the numerical results. A second avenue
of investigation concerns the possible extension of these results beyond the weakly nonlinear limit. Experi-
ments with the numerical model at higher forcing amplitudes demonstrate saturation in the strength of the
mean flow beyond a critical amplitude, similar to that observed in the laboratory experiments. This change
is associated with a transition from a wave-like instantaneous velocity field to a more turbulent eddy-filled
field, but despite this shift, the time mean circulation associated with these fields remains qualitatively very
similar. Consideration of the time-mean enstrophy equation suggests that the rectification mechanism of
up-gradient vorticity transport examined in the weakly nonlinear limit remains robust as long as the forcing
dominates over the mean flow advection of enstrophy and dissipation, and an open question is exactly what
aspects of the lessons learned so far in the wave limit remain valid in the turbulent regime.
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Introduction


Understanding horizontal dispersal in the oceans is important for a wide range of problems, including plank-
ton dynamics, larval transport, the fate of pollutants, spatial distribution of passive tracers, and development
of eddy parameterization. Although it is known that horizontal dispersal of a tracer patch occurs through
a combination of advective stirring and di�usive mixing, the spatial and temporal variations in the stirring
and mixing, and the relationships with the ow dynamics, are not well quanti�ed. Here we use velocity
�elds derived from satellite-altimeter data to examine the spatial and temporal variations in the horizontal
stirring in the ocean surface, and its relationships with coherent vortices.


Method


The surface ocean currents used in this study are derived from satellite altimeter measurements of sea level.
Gridded sea level anomalies from merged TOPEX/Poseidon and ERS-1/2 measurements were obtained
from the Archiving Validation and Interpretation of Satellite Data in Oceanography (AVISO), and surface
velocities were then calculated from these �elds assuming geostrophy. A climatological-mean velocity derived
from the CSIRO Atlas of Regional Seas (CARS) data atlas[3] was then added to the AVISO velocities to
obtain the full time-varying velocity �elds.


The stirring in the above velocity �elds is quanti�ed by calculating the distributions of Finite-Time
Lyapunov Exponents (FTLEs), which characterize the exponential separation of nearby particles. A large
value of FTLE corresponds to a location where there is rapid, exponential separation of the particles (so-
called chaotic stirring), whereas for small values of FTLE there is slow or no exponential separation of
particles (weakly-chaotic or regular stirring).


Results


We focus here on vortices and stirring in the East Australia Current (EAC) system. The EAC is an intense
western boundary current that ows south close to the east Australian coast line. The EAC separates from
the coast around 32oS, and there is strong mesoscale activity and formation of coherent vortices in this
separation region. These vortices are predominantly anticyclonic, have diameters of 150-300 km, and exhibit
a wide range of ow paths. Some of the vortices drift southward and have a life span of many months to
over a year, while others are absorbed back into the EAC. At any one time there can be several vortices in
the EAC separation region, and there are frequent vortex-vortex and vortex-EAC interactions.


The FTLE calculations indicate that the stirring in this region is not uniform. As shown in Fig. 1(a)
there is a wide range of stretching rates. For short integration time τ the distributions are asymmetric and
very broad. As τ increases the distributions narrow, and the peak moves to lower values. Calculations out
to τ = 80 days show that while the distributions continued to narrow the convergence is very slow and the
distribution had yet to converge to a single Lyapunov exponent (not shown).


There are spatial variations in FTLE at very small scales, and the FTLE �eld is characterized by a sea
of very narrow �laments of high values which are intermingled with coherent regions with very low values,
e.g. Fig. 2. These spatial variations are related to the existence and characteristics of the coherent vortices.
The �laments of high FTLE occur in strain-dominated regions surrounding (e.g., 35.5S,155E in Fig. 2a) or
between (e.g., 34.5S,155E in Fig. 2b) the vortices, whereas the very low FTLE occur in rotation-dominated
regions inside the vortices.
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Figure 1: (a) PDFs of FTLE for several integration periods τ , and (b) PDFs of 15-day FTLE for Q < �δQ
(solid curve) and Q > δQ (dashed).


To quantify the vortex-stirring relationship we calculate the distributions of FTLE conditioned by the
value of the Okubo-Weiss parameter Q ([2], [4]). In particular we consider the distributions for strain-
dominated regions (Q > δQ; δQ > 0), and for rotation-dominated regions (Q < �δQ). As illustrated in Fig
1b there is a clear di�erence between the FTLE distributions, with a much smaller mean and range of FTLE
in negative Q regions (vortices) than in positive Q regions (surrounding vortices).
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Figure 2: Maps of FTLE and currents in EAC separation region for (a) 19 Nov and (b) 17 Dec 1997. The


lighest shading corresponds to FTLE greater than 0.25 1/day, and darkest to FTLE less than 0.02 1/day.


Preliminary calculations for other oceans yield very similar results to the above. In each ocean there is a
wide range of stirring rates, with the variability closely related to the mesoscale activity and characteristics
of vortices. Also, the above distribution of FTLEs and relationships with vortices in the EAC are remarkably
similar to those from two-dimensional turbulence simulations (e.g., [1]).


———————————


References


[1] Lapeyre G., 2002. Characterization of finite-time Lyapunov exponents and vectors in two-dimensional


turbulence, Chaos, 12, 688–698.


[2] Okubo. A., 1970. Horizontal dispersion of floatable particles in the vicinity of velocity signularity such as


convergences, Deep Sea Res., 17, 445-454.


[3] Ridgway K.R., Dunn J.R., Wilkin J.L., 2002. Ocean interpolation by four-dimensional weighted least


squares - application to the waters around Australasia, J. Atmos. Oceanic Techn., 19, 1357-1375.


[4] Weiss, J., 1991. The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D, 48,
273-294.







GTP Workshop on
Coherent Structures in Atmosphere and Ocean
at NCAR, 11-14 July 2005, Boulder, CO, USA


The circulation in Lake Vostok
An analog study using a rotating heated cavity.


Mathew Wells 1 and John Wettlaufer, 1,2


1Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven CT 06520 USA
2Department of Physics, Yale University, PO Box 208120, New Haven CT 06520 USA


A large unexplored sub-glacial lake exists in Antarctica called Lake Vostok [1]. Due to the extreme and
long isolation of water in Lake Vostok, there may be unusual biota that inhabit these waters. The biological
habitability of this lake will depend in part upon the circulation arising from the very weak buoyancy forcing
due to geothermal heating and/or from phase changes at the base of the ice sheet. Key questions are whether
the lake is stratified or well mixed, and how the heat and nutrients dispersed.


Use of seismic and aerial gravity surveying [2] has revealed that Lake Vostok is 250 km long, 50 km wide
and over 1 km deep and is located beneath 3-4 km of glacial ice. A weak temperature gradient at the roof
and weak geothermal heating at the base are predicted to be the only buoyancy fluxes in the lake that could
drive any large-scale circulation and mixing. The resulting flow will then controlled by the spatial variation
of these buoyancy forces, the geometry of the lake cavity and the influence of forces. The slow circulation
of water in Lake Vostok has been investigated in four previous theoretical and numerical studies [3], [4],
[5], [6]. Conflicting predictions were made regarding whether the lake is expected to be stratified or well
mixed, whether there is a clockwise or anti-clockwise circulation, and whether the sloping roof provides a
topographic beta-plane effect leading to a flow intensified along the lakes eastern boundary.
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Figure 1: Diagram of the thermally forced cavity. Coriolis forces are generated by mounting the experiment
upon a rotating table.


To resolve these conflicting predictions, we have conducted analog experiments in a rotating, insulated
cavity that can be heated and cooled at the top and bottom boundaries. We will present results of the
combined effects of rotation, buoyancy forcing and bathymetry upon the model circulation, and discuss the
estimated circulation time-scales, stratification and dispersion rates the experiment implies for Lake Vostok.
The dominant mode of dispersion we observe in the experiment is due to the presence of coherent vortex
structures that arise due to the rotating convection, as previously seen by [7]. Two laboratory photographs
of these coherent quasi-2D structures are shown below in Figure 2.Use of scaling analysis predicts that such
quasi-2D vortices will also dominate the slow dispersion of chemicals and biology within Lake Vostok.







Figure 2: In the left image we show a visualization of rotating convection using thermochromic liquid crystal
beads. In the right-hand image, particle streak lines show the dispersion of green dye by the field of quasi-
2D eddies. Both images are taken looking down upon the rotating experiment and show that dispersion is
dominated by coherent vortex structures.
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The coloured bands of Jupiter are surely
the most famous example of zonation in rotat-
ing spherical fluids, but their origin remains de-
bated. Heuristic arguments over the last 30
years have begun to piece together a physical
picture of the phenomenon, although even now
we have nothing like a rigourous theoretical de-
scription.


Here results are presented from an analysis
of an experiment[1] conducted at the Coriolis
facility in Grenoble, France, which convincingly
reproduced this phenomenon in the laboratory.
Velocimetry anaylsis of the flow has allowed for
qualitative assessment of jet energy spectra and
Reynolds stresses for the first time in an labo-
ratory setting.


The experimental setup is a barotropic one,
in the sense that thermodynamics plays a neg-
ligible role in the evolution of the jets.


Figure 1: Although it is primarily associated with Jupiter,
zonation is common to all the gas giant planets. Shown
above is an image from ISS Cassini of the belts of Saturn.


Figure 2: Schematic of the experimental setup. The large
tank diameter allows fluids to reach far greater Reynolds
numbers than would otherwise be possible.


A continual spray of relatively high density salt
water is applied to the surface of the fluid in the
annulus, resulting in the formation of small con-
vective plumes due to hydrodynamic instability.
As the plumes grow, their energy is transfered
into horizontal shear due to the dominance of
Coriolis effects at large scales. A sloping bot-
tom boundary can be placed in the tank when
desired, mimicking the β effect due to planetary
curvature at mid-latitudes.


Images of the flow are converted into high
resolution velocity fields by the advanced ’cor-
relation imaging velocimetry’ program, CIV [2].
Velocimetry anaylsis of the flow has allowed for
retrieval of Reynolds stresses and jet energy
spectra over a wider range of scales than has
previously been possible in an experimental set-
ting.







A contour plot of zonal velocity against time shows the development of zonation in the sloping bottom
case very clearly.


Figure 3: a) Zonal flow as a function of time for sloping bottom, fast rotation case (large β effect) b) Zonal
flow as a function of time for flat bottom, slow rotation case (small β effect due only to centrafugal surface
deformation)


For a flow divided into mean and eddy components, the Reynolds stress gradient is the force acting on
the mean due to the eddies such that


∂ui


∂t
= −


∂〈u′
iu


′
j〉


∂xj
(1)


in the absence of viscosity and external forces. The importance of nonlinear advection to the dynamics in
the jet formation regime was assessed by comparing zonal mean acceleration with Reynolds stress gradient
in the radial direction.


Figure 4: a) Zonal Reynolds force and zonal acceleration as a function of time for the sloping bottom, fast
rotation case b) Correlation function in time of Reynolds force and zonal acceleration, same dataset


Averaged energy spectra of the total, zonal and eddy velocity fields in k - space are also to be presented.
These provide an extremely useful experimental test of the inverse cascade predictions for geostrophic and
2D β plane turbulence.
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Introduction
Cliff-ramp patterns (CR) are a common feature of scalar turbulence, and have been observed in a variety


of stable turbulent shear flows. A typical CR structure is characterized by a sharp temperature increase, the
cliff, followed by a more gradual temperature decrease, the ramp. The order is reversed for the ramp-cliff
(RC) structures, which are observed in stably stratified conditions when the shear is negative and in unstable
conditions when the shear is positive. Aircraft measurements obtained from NOAA BAT turbulence probes
were used to characterize and compare CR/RC structures at three different locations in stably stratified
conditions in the upper troposphere (a region for which there is a dearth of measurements of such patterns).
The three data sets include: an RC structure at 11.4 km. altitude over Wales on June 6, 2000 (negative
shear) and CR structures at 8.3 km altitude over Southern Australia on Sept. 2, 2002 and 9.65 km altitude
over Southern Australia on Aug. 6, 1999 in correspondence with the southern hemisphere winter subtropical
jet stream. These cases were chosen based on the large changes in potential temperature (up to 6 K) and
velocity (up to 15 m/s) associated with the cliffs. A notable similarity among these three cases is that the
Richardson numbers were all between 0.2 and 0.24.


The aircraft measurements were obtained as part of a multi-year effort to characterize both refractive
turbulence phenomenon and clear air turbulence events that could impact performance of aerospace systems
in the upper troposphere and lower stratosphere. CR/RC structures are of particular interest in both regards
because of the large temperature and velocity changes during the cliffs, which could upset aircraft flying on
constant Mach number flight control and because of the increased refractive turbulence associated with the
higher levels of small scale temperature fluctuations that can accompany the CR/RC structures.


Cliff-Ramp Characteristics
In each of the three data sets, three cliffs were identified. The cliff temperature fronts associated with


these ranged from 38 to 375 meters, with overall wavelengths of the CR pattern ranging from 1 to 8.2 km.
Figure 1 shows potential temperature measurements for the Aug. 6 case. The cliffs are clearly evident
(marked by dotted lines), and occur about every 20 km. The ramps extend for about 8 km, with the first
and second ramps separated from the subsequent cliffs by a more symmetric structure of the same scale. On
the scale of the CR structures, horizontal velocity fluctuations were closely correlated with those of potential
temperature, as seen in Figure 2. Although these patterns suggest vertical gradient transport of buoyancy and
momentum, the vertical velocity fluctuations were not consistent with such transport. However, the intensity
of vertical velocity fluctuations did increase noticeably when the CR patterns appeared; σw increased by a
factor of 2 for the June 6 and Sept. 2 cases, and by 50 percent for the Aug. 6 case (which was more turbulent
than the other two before the CR patterns appeared. Data from separate probes mounted on each wing
were used to estimate the horizontal orientation of the cliff temperature fronts for the Aug. 6 and June 6
cases. The temperature front angles varied, but were generally scattered around a direction oriented normal
to the mean wind direction. For the Aug. 6 case, data from a third probe on the tail was used to estimate
the vertical angle of the cliff-fronts, which ranged from 27 to 65 degrees for the three cliffs.







Short time values of the temperature structure constant, C2
T =< [T (x) − T (x + r)]2 > /r2/3 (averaged


over 1-km horizontal distances) exhibited locally high levels near the cliff temperature fronts. These were
shown to be associated with the steep temperature gradients in the cliff, and not small-scale, inertial-
range turbulence, thus demonstrating the direct coupling between large and small scales that is inherent
in quantities that exhibit cliff-ramp patterns. The high C2


T values may be misleading when applied to
electromagnetic propagation modeling, providing a false positive indication of high levels of small-scale
turbulence that would not correspond to scintillation effects. Instead, the large-scale temperature fronts
would more likely result in beam- steering errors. These artifacts can be distinguished from high levels of
small scale turbulence using third-order structure functions, which are dominated more by the large gradients
in the cliff. For the Sept. 5 and Aug. 6 cases higher order temperature structures (up to order 7) displayed
the same anomalous scaling effects as those reported for passive scalars.


170 180 190 200 210 220 230


338


340


342


344


346


Wind Relative Distance (km)


P
ot


en
tia


l T
em


p.
 (


K
)


Figure 1: Potential Temp.: 9.65 km, Aug. 6, 1999
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Figure 2: Wind Velocity: 9.65 km, Aug. 6, 1999


Kelvin Helmholtz Billows and CR Patterns
The CR/RC structures seen in the aircraft data in the upper troposphere display a more regular and


repeatable pattern than those reported in the boundary layer. This is consistent with a Kelvin-Helmholtz
(KH) wave train with the ramps representing the well-mixed billows and the cliffs marking the narrow braids
that separate adjacent billows. This connection was suggested by Whiteway, et. al [1], who analyzed the
same June 6 data set. They also presented numerical simulations of KH at a Richardson numbers of 0.22
that revealed a flattened billow, presumably caused by suppression of vertical motions due to the relatively
strong stability. Estimates of the vertical extent of the CR structures using aircraft data were consistent with
suppressed KH billows. However, such low aspect ratio KH waves would likely feature very low temperature
front angles (10 to 20o), which would be in conflict with the higher angles found from the aircraft multiple
probe analysis. Further experimental campaigns as well as numerically studies will hopefully shed light on
the development of cliff-ramp patterns in the tropopause region vis--vis Kelvin Helmholtz billow evolution
in a stably stratified fluid.
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