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• Statistical models for climate experiments

• Inference for a single region

• ANOVA models across regions

• Spatial models for temperature fields
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Climate: What you expect ...

Weather: What you get.
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An Atmosphere-Ocean General Circulation Model (AOGCM)
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Motivation

Based on model results, what will the climate be
like in 2100?

Impacts of climate change: Extremes in temperatures,
Possible degradation in air quality, Changes in the do-
main of vector-borne diseases.

• Reconciling different projections - no model is the
true model!

• Offering stake-holders and policy-makers a proba-
bilistic forecast.

• Substituting formal probabilistic assumptions for
heuristic criteria, and testing sensitivity of the re-
sults to them.
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The main points

Likelihood: Formulate a statistical description of
model bias and variability where each model is a “sam-
ple” from a superpopulation of AOGCMs.

Prior: Include any prior knowledge on the model
biases.

Posterior Using Bayes compute the distribution of
possible climate change given the model experiments.

Likelihood × Prior → Posterior
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A test suite of regional AOGCM experiments

• 9 AOGCMs;

• 22 Regions;

• 2 Seasons;

• Simulated Temperature values in 30-years averages
(X, 1961-1990; Y , 2071-2100 (A2));

• Observed Temperature average, X0, for 1961-1990.
(Allows for an estimate of model bias for current
climate.)

The data are the X’s and Y ’s.

6



Regions
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State-of-the art inference for the last IPCC
report
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Some background: Reliability Ensemble Av-
erage (REA)

• Journal of Climate, May 2002:Calculation of Aver-
age, Uncertainty Range and Reliability of Regional
Climate Change from AOGCM Simulations....., by
Giorgi and Mearns.

• Combine regional climate results , based on a WEIGHTED
AVERAGE.

• Weights are implicit but quantify:
BIAS: model performance for present climate
and
CONVERGENCE: model agreement for future pro-
jections.
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A Bayesian model: models projections and
observations

Linear random effects model for a region:

For model i
current temperature

X i = µ + bi + ui

future projection
Y i = ν + b′i + vi

observed temperature

X0 = µ + e

True current temperature µ,
“true” future temperature ν
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Model projection = true climate + model bias + noise

Key Assumption:

X i = µ + bi + ui

Y i = ν + b′i + vi

E[bi] = E[b′i] = 0

AOGCM’s biases are treated as a random effect with
zero mean.

The noise is due to the internal variability of the
model (weather).
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An identifiable model

The bias and internal variability are not identifiable
with only one experiment per model.

Combine the model variability and the bias random
effect into one variance term:

X i = µ + ei

Y i = ν + εi

X0 = µ + e

The random components are mean zero, Gaussian

V AR(ei) = λi and V AR(εi) = θλi
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The goal

X i = µ + ei

Y i = ν + εi

X0 = µ + e

The posterior for (ν−µ) represents the uncertainty
in the change in climate
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Why not use the sample mean?

• Not weighted by how well a model’s matches cur-
rent climate
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A Bayesian model continued: The priors

λi: Precision of the ith model

Bias of the ith model and Convergence of the ith
model within the ensemble give information on λi
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A Bayesian model continued: The priors

λi: Precision of the ith model

Bias of the ith model and Convergence of the ith
model within the ensemble give information on λi

Prior distribution for λi is

λi ∼ Gamma(.001, .001)

a very weak prior assumption.
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More Priors

Priors for µ, ν and θ are:

µ ∼ Uniform(−∞, +∞)

ν ∼ Uniform(−∞, +∞)

θ ∼ Gamma(.001, .001)

As non-committed as we can be!
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More Priors

Priors for µ, ν and θ are:

µ ∼ Uniform(−∞, +∞)

ν ∼ Uniform(−∞, +∞)

θ ∼ Gamma(.001, .001)

As non-committed as we can be!

Perhaps expert knowledge could be included ...
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Markov Chain Monte Carlo

Statistical computation The posterior does not have a
simple form. As an alternative one generates a zillion
samples from the posterior and makes a histogram of
the density.

• Simple Gibbs sampler – all full conditionals are ei-
ther gammas or Gaussians.
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Markov Chain Monte Carlo

Statistical computation The posterior does not have a
simple form. As an alternative one generates a zillion
samples from the posterior and makes a histogram of
the density.

• Simple Gibbs sampler – all full conditionals are ei-
ther gammas or Gaussians.

• Conclusions based on a total of 50, 000 values for
each parameter, representing a sample from its pos-
terior distribution.

• Convergence of algorithm verified by standard di-
agnostic tools.

• You can do this at home, complete R source code
is posted: www.cgd.ucar.edu/~nychka/man.html
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Conditional distributions
for present and future temperature

Assume λ1, λ2, . . . , λ9 known.

Posteriors for present and future true temperatures are cen-
tered around

µ̃ = (∑9
i=0 λiXi)/(∑9

i=0 λi)

and
ν̃ = (∑9

i=1 λiYi)/(∑9
i=1 λi)
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Conditional distributions
for present and future temperature

Assume λ1, λ2, . . . , λ9 known.

Posteriors for present and future true temperatures are cen-
tered around

µ̃ = (∑9
i=0 λiXi)/(∑9

i=0 λi)

and
ν̃ = (∑9

i=1 λiYi)/(∑9
i=1 λi)

A weighted average!
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But λi is unknown,
so...back to bias and convergence!

The posterior mean for λi is

a+1

b+1
2((Xi−µ̃)2+θ(Yi−ν̃)2)

Precision is large only if both |Xi − µ̃| (BIAS)
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But λi is unknown,
so...back to bias and convergence!

The posterior mean for λi is

a+1

b+1
2((Xi−µ̃)2+θ(Yi−ν̃)2)

Precision is large only if both |Xi − µ̃| (BIAS)

and |Yi − ν̃| (CONVERGENCE) are small

The BIAS is just |Xi − X0|
if the observations are assumed to have no error.
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A tour of Central Asia:
posteriors for µ and ν
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Posterior for climate change ∆T = ν − µ

NIES MRI CCC CSIRO CSM PCM GFDL DMI HADCM

5.83 4.81 -7.48 0.50 -0.13 -1.40 -0.96 2.38 1.08
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What is in a distribution?

The “fedora hat” shape would not be well explained
by the mean and standard deviation.
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What is in a distribution?

The “fedora hat” shape would not be well explained
by the mean and standard deviation.

One explanation is that this “random sample” of mod-
els is actually is not as representative of the full range
of physics.
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A more biological explanation of the shape
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A more biological explanation of the shape

A (large) snake who has swallowed an elephant.
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Model Extensions

1. Is Yi (cor)related with Xi?

2. Do we have real outliers among Xi and Yi?

Easily modeled:

1. Assume
X i = µ + ei

and
Y i = ν + β(Xi − µ) + εi

2. Assume heavy-tailed distributions instead of Gaus-
sians for Xi and Yi
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A tour of Central Asia
Regression coefficient between future and present
climate β
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A tour of Central Asia
Different assumptions for error distribution.

Results varying across T -family.
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A multivariate version

How can model results be combined across regions.
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Index across models and regions

i indexes AOGCMs (9), j indexes regions (22)

Then:

X0j = µj + e0j

Present temperatures

Xij = µj + bi + eij

Future temperature projections across regions

Yij = νj + b′i + βx(Xij − µj − bi) + εij

Linking biases
b′i = βbbi + ωi
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Main features

• Still region specific µj and νj.

• The additive effects bi and b′
i, common to all re-

gions for a given model, introduce correlation.

• βb and βx introduce correlation between regions as
well, in addition to allowing for correlation between
future and current responses.
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Regional climate change
The big picture
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A spatial model for the full AOGCM output

z is a grid cell location.

X0(z) = µ(z) + u0(z)

Xi(z) = µ(z) + ui(z)

Yi(z) = µ(z) + vi(z)

Here the climate change has the form

µ(z) =
∑
ψk(z)θk

where {ψk} are spherical harmonics. ui(z) and vi(z) are
isotropic processes on the sphere.
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Preliminary results

15 AOGCMS on a 5 × 5 grid taken from the MAG-
ICC/SCENGEN package
Posterior mean field:
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Some ensemble members
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Conclusions

• We have formalized the criteria of bias and conver-
gence as a way of analyzing Multi-model ensembles.

• There is a hierarchy of models available. The as-
sumptions for each are clearly stated. In particular
the prior assumptions are vague, not constraining
any of the parameters a priori.

• The posterior distributions from combining models
can be used to propagate uncertainty into other
models to assess the impacts of a changed climate.

• We can perform sensitivity analysis to prior as-
sumptions.
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