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e Statistical models for climate experiments
e Inference for a single region
e ANOVA models across regions

e Spatial models for temperature fields




Climate: What you expect ...
Weather: What you get.




An Atmosphere-Ocean General Circulation Model (AOGCM)
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Motivation

Based on model results, what will the climate be
like mn 21007

Impacts of climate change: Extremes in temperatures,
Possible degradation in air quality, Changes in the do-
main of vector-borne diseases.

® Reconciling different projections - no model is the
true model!

e Offering stake-holders and policy-makers a proba-
bilistic forecast.

e Substituting formal probabilistic assumptions for
heuristic criteria, and testing sensitivity of the re-
sults to them.



The main points

Likelihood: Formulate a statistical description of
model bias and variability where each model is a “sam-
ple” from a superpopulation of AOGCMs.

Prior: Include any prior knowledge on the model
biases.

Posterior  Using Bayes compute the distribution of
possible climate change given the model experiments.

Likelithood x Prior — Posterior



A test suite of regional AOGCM experiments

e 9 AOGCMs;
e 22 Regions;
® 2 Seasons;

e Simulated Temperature values in 30-years averages
(X, 1961-1990; Y, 2071-2100 (A2));

e Observed Temperature average, X, for 1961-1990.
(Allows for an estimate of model bias for current
climate.)

The data are the X ’s and Y ’s.



Regions




State-of-the art inference for the last IPCC
report




Some background: Reliability Ensemble Av-
erage (REA)

e Journal of Climate, May 2002:Calculation of Aver-
age, Uncertainty Range and Reliability of Regional
Climate Change from AOGCM Simulations....., by
Giorgi and Mearns.

e Combine regional climate results , based on a WEIGHTED
AVERAGE.

e Weights are implicit but quantify:
BIAS: model performance for present climate
and

CONVERGENCE: model agreement for future pro-
jections.



A Bayesian model: models projections and
observations

Linear random effects model for a region:

For model 2
current temperature

XZ':/L—F[)Z'—FUZ'

future projection
Y, =v+b + v

observed temperature
X() = u+e

True current temperature p,
“true” future temperature v



Model projection = true climate + model bias + noise

Key Assumption:
Xi=p+b+u
Y, =v+b + v
E[bi] = E[bj] = 0

AOGCM’s biases are treated as a random effect with
Zero mean.

The noise is due to the internal variability of the
model (weather).



An identifiable model

The bias and internal variability are not identifiable
with only one experiment per model.

Combine the model variability and the bias random
effect into one variance term:

XZ':/L—FGZ'
Y, =v+eg
X():,LL—l—G

The random components are mean zero, Gaussian



The goal

Xi=pte
YZ':I/—l—GZ'
XOZ,LL+€

The posterior for (v — ) represents the uncertainty
in the change in climate
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A Bayesian model continued: The priors

A;: Precision of the 2th model

Bias of the 2th model and Convergence of the ith
model within the ensemble give information on \;



A Bayesian model continued: The priors

A;: Precision of the 2th model

Bias of the 2th model and Convergence of the ith
model within the ensemble give information on \;

Prior distribution for \; is
A; ~ Gamma(.001,.001)

a very weak prior assumption.



More Priors

Priors for p, v and 0 are:

p ~ Uniform(—oo, +00)
v ~ Uniform(—oo, +00)

0 ~ Gamma(.001,.001)

As non-commatted as we can be!



More Priors

Priors for p, v and 6 are:

p ~ Uniform(—oo, +00)
v ~ Uniform(—oo, +00)

0 ~ Gamma(.001,.001)

As non-commatted as we can be!

Perhaps expert knowledge could be included ...
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Statistical computation The posterior does not have a
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Markov Chain Monte Carlo

Statistical computation The posterior does not have a
simple form. As an alternative one generates a zillion
samples from the posterior and makes a histogram of
the density.

e Simple Gibbs sampler — all full conditionals are ei-
ther gammas or (Gaussians.

e Conclusions based on a total of 50,000 values for
each parameter, representing a sample from its pos-
terior distribution.

e Convergence of algorithm verified by standard di-
agnostic tools.

® You can do this at home, complete R source code
is posted: www.cgd.ucar.edu/ "nychka/man.html



Conditional distributions
for present and future temperature

Assume A\, Ao, ..., Ag known.

Posteriors for present and future true temperatures are cen-
tered around

= (Z?:O )‘zXz)/(Z?ZO >\z)
and
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Conditional distributions
for present and future temperature

Assume A\, Ao, ..., Ag known.

Posteriors for present and future true temperatures are cen-
tered around

= (Z?:O )‘zXz)/(Z?ZO >\z)
and
v = (Yo YD)/ (5 Ad)

A weighted average!
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But \; is unknown,
so...back to bias and convergence!

The posterior mean for )\; is

a+1
bt (Xi—p)2+0(Y;—v)?)

Precision is large only if both | X; — u| (BIAS)
and |Y; — v| (CONVERGENCE) are small

The BIAS is just | X; — X
if the observations are assumed to have no error.



A tour of Central Asia:
posteriors for p and v

CAS, DJF
w
=
=+ _|
=
N_
z °
=
i1}
(]
E_ — r—
= a ma A 4 ap |(ma A pma ¥ B o
o = 2 = o2 = =
g - 8 g 53 % 3 g
] — o =
(o] = = = =
g 28 358 |3 z i
I T T

265 270 275 250 283



Posterior for climate change AT = v — p

Density
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1.0

05

0.0

CAS, DJF
c == g g = 8 E
W < w o o =
0 . J : . 0
NIES | MRI | CCC | CSIRO | CSM | PCM | GFDL | DMI | HADCM
5.83 | 4.81 | -7.48 0.50 -0.13 | -1.40 | -0.96 | 2.38 1.08




What is in a distribution?

The “fedora hat” shape would not be well explained
by the mean and standard deviation.



What is in a distribution?

The “fedora hat” shape would not be well explained
by the mean and standard deviation.

One explanation is that this “random sample” of mod-
els is actually is not as representative of the full range
of physics.



A more biological explanation of the shape



A more biological explanation of the shape

A (large) snake who has swallowed an elephant.



Model Extensions

1. Is Y; (cor)related with X;?

2. Do we have real outliers among X; and Y;?

Easily modeled:

1. Assume
Xi=pte

and
Yi=v+0(Xi—p+e

2. Assume heavy-tailed distributions instead of GGaus-
sians for X; and Y;



A tour of Central Asia
Regression coefficient between future and present
climate (3

Different from 0!



A tour of Central Asia
Different assumptions for error distribution.

Results varying across T-family.




A multivariate version

How can model results be combined across regions.




Index across models and regions
¢ indexes AOGCMs (9), 7 indexes regions (22)
Then:

Xoj = Hj + €,
Present temperatures
Xij = pj + b + e
Future temperature projections across regions
Yij = v+ b+ Bo(Xij — pj — bi) + €

Linking biases
by = Bybi + wi



Main features

e Still region specific p; and vj;.
e The additive effects b; and b, common to all re-

gions for a given model, introduce correlation.

e 3, and 3, introduce correlation between regions as
well, in addition to allowing for correlation between
future and current responses.



Regional climate change

The big picture
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A spatial model for the full AOGCM output

z 1s a grid cell location.
Xo(z) = p(z) + uo(2)
Xi(z) = p(z) + ui(2)
Yi(z) = p(z) +vi(z)

Here the climate change has the form

p(z) = X hr(2)0

where {1} are spherical harmonics. u;(z) and v;(z) are
isotropic processes on the sphere.



Preliminary results

15 AOGCMS on a 5 x 5 grid taken from the MAG-

ICC/SCENGEN package
Posterior mean field:

postetior mean



Some ensemble members

posterior mean posterior sample

posterior mean posterior mean

posterior sample posterior sample

posterior mean posterior mean



Conclusions

® We have formalized the criteria of bias and conver-
gence as a way of analyzing Multi-model ensembles.

@ There is a hierarchy of models available. The as-
sumptions for each are clearly stated. In particular
the prior assumptions are vague, not constraining
any of the parameters a priori.

e The posterior distributions from combining models
can be used to propagate uncertainty into other
models to assess the impacts of a changed climate.

e We can perform sensitivity analysis to prior as-
sumptions.



