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Some Examples

Precipitation
Extremes are used to determine flood potential for

urban areas and also for dam specifications.

Ecological models are often driven by meteorology.

Typically extremes are described by the return pe-
riod: “A 100 or 500 year event”.

How does one determine this from 50 years of data?
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Data product for high rain fall rates in CO is the pre-
cipitation atlas.

No quantification of uncertainty!
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Area around Boulder
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Area around Boulder

100 year event: ≈ 5.0 inches of rain in 24 hours
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Surface level ozone

Ozone( O3) is formed from volatile organic compounds
(both pollutants and naturally occurring compounds
) emitted into the atmosphere and NOx in the pres-
ence of sunlight.

High ozone concentrations cause respiratory problems
and sustained lower levels damage vegetation.

US EPA regulations based on the Clean Air Act:
A suggested ozone pollutant standard is based on

the fourth highest (max) 8-hour daily average (FHDA)
recorded during the year. A region is in attainment
if the three year average is less than 80 PPB.
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Example of calculating the FHDA statistic

The ozone ”season” is 184 days. ≈ May-September.

FHDA = (1− 4
184) quantile of the ozone distribution
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RTP study region with FHDA’s for 1997
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Spatial extremes: our problem today

Based on both of these examples:

Given a spatial process Z(x), what can we say about

P (Z(x) > z0)

when z0 is large?

11



Spatial extremes: our problem today

Based on both of these examples:

Given a spatial process Z(x), what can we say about

P (Z(x) > z0)

when z0 is large?

Note:
This is not about dependence between Z(x) and

Z(x′) – this is another topic!
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Extreme value distributions

An example

Random sample 1000 Uniforms
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Random sample 1000, mean of 25 uniforms, max of 25
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Random sample 1000, max of 100 , standardized
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Example with Normal, max of 100 Normals
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A Q-Q diagnostic plot
The maxima against a normal (a) and a GEV (b).
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Generalized extreme value distribution (GEV)

Clearly, it was not serendipity that the GEV distri-
bution was chosen as an example for the second Q-Q
plot!

GEV cumulative distribution function:

FGEV (z) = e−(1+ξ(z−µ)/σ)−1/ξ
.

Parameters: location (µ), scale (σ) and shape (ξ).
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Some points about the GEV

• When the shape is negative, the GEV distribution
is zero above µ− σ/ξ.

• Mn is the maximum of n random variables,

P (Mn < z) ≈ FGEV (z),

• Special case for the normal, the Gumbel

FGumbel(z) = 1− e−e−(z−µ)/σ
.

• GEV includes the exponential and Wiebul
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Generalized Pareto Distribution (GPD)

Exceedence over threshold model

X is random and u is a (large) threshold
Conditional distribution

The probability of X exceeding x given that X is
greater than u is

P (X > x|X > u) = [X > x|X > u] =
1− F (x)

1− F (u)

The GPD:

1− F (x)

1− F (u)
≈ (1 + ξ(x− u)/(σ))−1/ξ

for x and u “large”.
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Fort Collins Precip Series

Daily precipitation with threshold of .395
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Quantiles and return levels

Given a GEV or GPD model for the tail of a distribu-
tion, a useful transformation is the quantile function.
Quantile

F a distribution function, the p-quantile is xp =
F−1(p). E.g. the probability of exceeding xp is 1− p.
Return levels

• For annual maxima the 100 year return level is the
(1- (1/100))= .99 quantile.

• For a GPD fit to daily exceedences the return level
is the 1− 1/(365 ∗ 100) quantile.

The GEV and GPD have simple forms for their quan-
tiles, but they are nonlinear in the parameters.
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Fitting the GEV and GPD models to data

Use Maximum likelihood
The likelihood is easy to evaluate and maximize.

Using a Bayes method is more difficult ... .
Choosing the threshold for the GPD

Find a range for u where the GPD parameters do
not vary much.
Profile likelihoods are useful for inference on return levels
Approximate confidence intervals and sets are based

on the likelihood surface and a χ2 critical value.
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Fort Collins precip example

Variation of GPD parameters with threshold – the
shape, ξ

Suggests a threshold of 0.395.
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Likelihood based inference

(a) confidence set for σ and ξ and (b) the profile like-
lihood for the 50 year return level.
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Fitting a daily ozone series u = 60 PPB
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Estimates across station network.

To get an estimate of FHDA substitute σ̂ and ξ̂ into
the GPD quantile function (with p = 1- 4/184).

(a) observed FHDA, (b) estimated FHDA and (c) five-
year return levels
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A modest space-time model for ozone

Key idea: Conditional Simulation
For unmonitored locations find the conditional dis-

tribution of the FHDA. The distribution of the fields
does not have a closed form and so we just generate
samples from it.
Space-time model for daily values
In order to simulate from the FHDA field one needs

a model for the temporal and spatial dependence of
daily ozone. Transformed and scaled daily ozone fol-
lows an autoregressive model with spatially correlated
shocks.
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Model components

Transformation: y(x, t) = 8-hour ozone at location x and
time t.

u(x, t) =
y(x, t)− µ(x, t)

σ(x)

Autoregression: u(x, t) = ρ(x)u(x, t) + e(x, t)

Spatial dependence: e(x, t) uncorrelated over time and
stationary over time.

COV (e(x, t), e(x′, t)) = (1− ρ(x)2)k(||x− x′||)

Under the assumption of multivariate normality one
can generate fields of daily ozone conditional on the
observed values.
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Transformation
µ(x, t) fit for each station location with a sine/cosine

expansion and then smoothed over space using PC
applied to regression coefficients. Extrapolation to
unmonitored locations using interpolating thin plate
splines (TPS) .
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σ(x) also based on TPS interpolation of station esti-
mates.
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Autoregressive model
ρ(x) found from autoregression on transformed sta-

tion data and then extrapolated using TPS
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Spatial dependence
Correlogram of shocks suggests a mixture of expo-

nential covariances

k(d) = αe−d/θ1 + (1− α)e−d/θ2

with α = .09, θ1 = 18 (miles) and θ2 = 270 (miles)
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Anisotropy?
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Inference for FHDA where we don’t measure
it.

First discretize this problem
yt daily ozone values on a grid and including the sta-
tions locations.

o =

 ys

yg

 (1)

Generating one year
Starting with an initial field: y0

1. spatial shock sample from [eg
t |es

t ]

2. propagate ut = ρut−1 + conditional shocks

3. back transform yt = utσ + µ

Repeat for entire season.
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For each location compute FHDA from the seasons results.

Do this a “1000” times.
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Two samples from conditional dist. near RTP, NC

Top: Mean (blue) samples ( red)
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Below: Differences from mean
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Inference/Posterior

Repeat simulations of year to accumulate a distribu-
tion of FHDA
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Probability of exceeding the ozone standard

(a) Analysis from space-time model (b) Using GPD
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A modest spatial model for ozone extremes

Predict extremes in ozone at locations where there
are not monitoring stations.

Using the GPD model this is can be done by predict-
ing σ and ξ at arbitrary locations.
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A hierarchical spatial model

Observation model:
y(x, t) surface ozone at location x and time t.

[y(x, t)|σ(x), ξ(x), u, y > u]

A Model for the spatial Process

[σ(x), ξ(x), u|θ]

Prior for hyperparameters

[θ]
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Joint pdf for data and parameters

Assume that the extreme observations are condition-
ally independent.

Πi,t[y(xi, t)|σ(x), ξ(x), u, y > u] [σ(x), ξ(x), u|θ] [θ].

t indexes days and i indexes station locations.
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A Bayes analysis

For a formal Bayesian analysis, the specification of the
joint is a complete recipe for inference on the param-
eters. Using Bayes Theorem, the posterior for σ(x)
and ξ(x) given the data ([σ(x), ξ(x)|y(x, t), θ]) can, in
principle, be computed.

Posterior mode
A useful summary of the posterior is to find the

parameters that maximize the posterior. This can
also be done by maximizing the joint density ( because
it is proportional).
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Some shortcuts and assumptions

ξ, the shape, is constant over space
Justified by univariate fits.

Spatial model for σ(x)
Assume that σ(x) is a Gaussian process with an

isotropic Matern covariance function.

Parameters for the Matern
Fix the smoothness of the Matern at ν = 2 and let

the range be very large. The only remaining param-
eter λ is the sill, or variance of the process.

This is a Bayesian description of a thin plate spline model.
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More about σ(x)

λ is the only hyperparameter and we just put an un-
informative prior on it.

σ(x) = P (x) + e(x)

where P is a linear function of space and e is a smooth
process.
As λ →∞ the surface will tend toward just the linear
function.

As λ → 0 the posterior surface will fit the data more
closely.
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log of the joint distribution

Xβ is a linear function over space.

M∑
i=1

lGPD(Y i, σ(xi), ξ)−
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log of the joint distribution

Xβ is a linear function over space.

M∑
i=1

lGPD(Y i, σ(xi), ξ)−

λ(σ −Xβ)T (K−1)(σXβ)/2− log(|λK|)
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log of the joint distribution

Xβ is a linear function over space.

M∑
i=1

lGPD(Y i, σ(xi), ξ)−

λ(σ −Xβ)T (K−1)(σXβ)/2− log(|λK|)

+C.
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log of the joint distribution

Xβ is a linear function over space.

M∑
i=1

lGPD(Y i, σ(xi), ξ)−

λ(σ −Xβ)T (K−1)(σXβ)/2− log(|λK|)

+C.

K is the thin-plate spline like covariance for the prior
on σ. at the observations.

This is also a penalized likelihood.
The penalty on σ is due to the covariance and the

smoothing parameter, λ.
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The profile likelihood surfaces for σ
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(b)  lambda= 1e−6 
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(c)  lambda= 1e−4 
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Inference for λ

Profile likelihood for λ
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Inference for λ

Profile likelihood for λ

Oops!
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Another try

Fit a thin-plate spline to the MLE from the univariate
fitting.
Determine λ by cross-validation:

• For fixed λ omit each location, fit a spline to the
remaining points

• predict the value at the omitted location.

• Compare this to the observed value. (difference is
called the cross-validated residual)

• Choose the value of λ that minimizes the sum of
squares of the CV residuals

When this is done one gets a picture like (c).
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Probability of exceeding the ozone standard

(a) Analysis from space-time model (b) Using GPD
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Discussion

• Extreme value distributions offer an alternative to
modeling tails of a distribution.

• Using two very different approaches the ozone case
study ends with a surprisingly similar analysis.

• A more elaborate model would be possible by in-
cluding more data, both over space and time. Some
possible extensions: nonstationary covariances, link
function for the GPD parameters and including
some temporal dependence.
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