
Statistical Methods for
Numerical Weather Prediction.

Thomas Bengtsson
(Doug Nychka, Chris Snyder)

Geophysical Statistics Project – NCAR, Boulder, CO
www.cgd.ucar.edu/~tocke/ tocke@ucar.edu

University of Missouri-Columbia
Department of Statistics

Oct 11, 2001.

GSP is supported by the National Science Foundation
under grants DMS 9815344 and DMS 9312686.



Outline

1. Numerical Weather Prediction

• Ensemble Forecasting

• Lorenz ODE’s

2. Atmospheric Data Assimilation & State-Space Framework

• Nonlinearities (Non-gaussian forecast distributions)

– Simulations

• High-dimensional (Computational issues)

3. Future Directions



Numerical Weather Prediction (NWP)

• A weather forecast is produced by integrating forward (in time) a system
of nonlinear differential equations:

xt+δt = xt +

∫ t+δt

t

Ω(u)du

Here, xt is initial condition (current state of atmosphere) and Ω(t) = ẋt
defines the physics.

• A NWP model must be able to incorporate and combine:

1. physical laws for atmosphere (classical mechanics, thermo dynamics).

2. statistical and numerical techniques.

• Forecasting (weather) is an uncertain proposition
- a matter of probability?



Ensemble Forecasting

• A probabilistic view of prediction: p(xt).

• Difficult to solve forward integration of p(xt) analytically.

• An ensemble forecast is a (sample) collection of weather forecasts
that verify at the same time.

• The ensemble is (generally) derived under the same dynamic model start-
ing from different initial conditions.

• Issue: how to sample from posterior?



NCEP Ensemble (Sivillo et al., 1997)

• 5640-m contour line of 500-hPa height field (15 November, 1995)

• Solid line ↔ actual weather, 15 Nov.



NCEP Ensemble (Sivillo et al., 1997)

• Ensemble spread (variance) decreased ↔ forecast more accurate.



Lorenz System (Lorenz, 1963)

• Simplification of motion of a fluid heated below in a gravitational field.

• Equations:

ẋt = −σ(xt + yt)

ẏt = rxt − yt − xtyt
żt = xtyt − bzt

• xt ∝ intensity of fluid flow
yt represents ∆T between ascending/descending currents
zt ∝ temperature gradient.



Ensemble Forecast



Atmospheric Data Assimilation & State-Space Framework

Data Assimilation

Updating our knowledge of the state of the atmosphere once new weather
data is available.

Atmospheric Model

Weather observations −→ yt = Htxt + εt

Atmospheric State −→ xt = G(xt−1)

yt ∈ <105

, data

xt ∈ <107

, unobserved

Ht maps state to observation (linear or non-linear)

G highly nonlinear, chaotic (known or approximate)

εt (gaussian) observation error, cov(εt) = R

Sequential assimilation and forecasting:

p(xt), yt
Bayes−→ p(xt|yt)

G(·)−→ p(xt+1), yt+1
Bayes−→ p(xt+1|yt+1)



Forecast Chaos



Linear Filtering

• Assuming p(xt) and p(yt|xt) both normal, assimilate yt and p(xt) using
the Kalman Filter (KF) (Kalman, 1960):

E(xt|Yt) = E(xt|Yt−1) + Kt[yt −HtE(xt|Yt−1)]

Pu
t = (I−KtHt)P

f
t ,

where

Kt = Pf
tH

′
t(HtP

f
tH

′
t + R)−1, and

Pf
t = E{[xt − E(xt|Yt−1)][xt − E(xt|Yt−1)]

′}.

• Easy to implement sequentially in systems with linear dynamics.

• Covariance recursion expensive for high-dimensional systems.



The Ensemble Kalman Filter (EnsKF)

• EnsKF proceeds by estimating the first two moments of the forecast
distribution using an ensemble (sample) of state vectors.

Ê(xt|Yt) = Ê(xt|Yt−1) + K̂t[yt −HtÊ(xt|Yt−1)]

Algorithm:

i. sample xi ∼ p(xt−1|Yt−1), for i=1,...,m.

ii. propagate xfi = G(xi), for i = 1,...,m.

iii. calculate Ê(xt|Yt−1) = 1
m

∑m
i=1 xfi , and P̂f

t .

iv. update Ê(xt|Yt−1) using the sample moments from iii).

• Advantage: covariance information is propagated in a compact and re-
duced dimensional form, real-time efficiency, feasible to implement in
high-dimensional systems, performs well in low-order systems with un-
stable dynamics



Nonlinear Filtering

• No universal analytical solution exists.

• Use extended KF (Jazwinski, 1970); or, Sequential Monte Carlo (SMC)
filters (Doucet et al., 2001).

• Expect problems with the extended KF if:

– G(·) strongly nonlinear (Evensen, 1994; Miller at al. 1994).

use sample based filter, e.g. ensemble Kalman filter
(Evensen, 1994).

– p(xt) non-gaussian

use mixture (Gaussian sum) Kalman filter
(Alspach & Sorenson, 1972; Chen & Liu, 2000).

• Expect problems with SMC filters if:

– dim(xt) is large (Gilks et al., 1996; Robert & Casella, 1999)



A Mixture Ensemble Kalman Filter

• Suppose p(xt) is non-gaussian.

• We approximate p(xt) by a mixture of Gaussian distributions:

p(xt) =

k∑
i=1

piMN(µi,Pi)

By Bayes theorem,

p(xt|yt) =

k∑
i=1

p?iMN(µ?
i ,P

?
i )

Here (µ?
i ,P

?
i ) are found by KF, and p?i ∝ pi × p(yt|µi,Pi)

• Need to choose k, MN(µi,Pi)

Gaussian prior/posterior → k = 1

Kernel density estimate → k = ensemble size



A (Bootstrap) Particle Filter (Doucet et al., 2001)

p̂(xt−1), yt−1
Bayes−→ p̂(xt−1|yt−1)

G(sample)−→ p̂(xt), yt
Bayes−→ p̂(xt|yt)



A Sampling Scheme

1. Calculate µ?
i using KF, and find p?i .

2. Generate the following random quantities:

x? ∼ MN(0,Pi) , y? = Hx? + e

where e ∼ MN(0,R).

3. Find u = x? −Kiy
?, and let zi = µ?

i + u. Use zi with probability p?i .

Note that the perturbation u has the correct (posterior) covariance:

Cov(u) = Cov(x∗) + Cov(Kiy
?)− 2Cov(x∗,Kiy

?)

= Pi + PiH
T (HPiH

T + R)−1HPi − 2PiH
T (HPiH

T + R)−1HPi

= Pi −KiHPi = Pu
i

• No need to factor Pi if x? is a sample perturbation from the prior en-
semble.



Simulations

Form of prior p̂(xt) Statistics

Gaussian MN(µ̂, P̂) (µ̂, P̂) = ensemble mean, cov.

Mixture
∑m

i=1
1
m

MN(µ̂i, P̂i) µ̂i = i:th ensemble member

P̂i = cov. in neighborhood of µ̂i

• m = (40,400), Ht = I, var(εt) = 4I, T = 5000.

• Error measure:

median of RMSEt =

√
(xt − Ê(xt|yt))′(xt − Ê(xt|yt))/3

δt Gaussian, k=1 Mixture, k=m
m = 40 m = 400 m = 40 m = 400

.1 .51 .35 .54 ?
.25 .75 .68 .56 .52
.5 1.06 1.05 .76 .71

• Improvement is 25-30%.



Unstable Dynamics



Conditional Simulation Results

• Condition on posterior means from gaussian assimilation
located in saddle (T = 250).

• m = (40,400), Ht = I, var(εt) = 4I.

• Error measure: median of RMSEt

δt Gaussian Mixture
m = 400 m = 40 m = 400

.5 1.64 .94 .73

• Improvement following unstable (saddle) area is 45-55%.



Computational Issues: Sequential Assimilation of Observations

Lemma
For uncorrelated (independent) measurement errors, sequential as-

similation of observations yields the same result as simultaneous assim-
ilation.

• Implication: The inverse of the Kalman gain matrix does not have to be
explicitly calculated.

• The jth observation at time t is related to the state by yjt = hjtxt + εjt .
Assimilation of yjt is given by

E(xt|yj
t ,Yt−1) = E(xt|y(j−1)

t ,Yt−1) + K
(f,j−1)
t [yj − hjtE(xt|y(j−1)

t ,Yt−1)],

where yk
t = (y1

t , y
2
t , . . . , y

k
t )
′, and K

(f,k)
t = P(f,k)

t hjt
′

(hjtP
(f,k)
t hjt

′
+R)

.

• To obtain E(xt|Yt) iterate above for all observations in yt.



Computational Issues: Limiting Impact of Observations.

• Observations are (fairly) local in space → ht is sparse.

• (From sequential update) Need to compute Pf
t h
′
t.

P̂f
t h
′
t =

1

m− 1

m∑
i=1

[xfi − Ê(xt|Yt−1)]{ht[xfi − Ê(xt|Yt−1)]}′

=
1

m− 1

m∑
i=1

αi[x
f
i − Ê(xt|Yt−1)]

• In terms of error structure, physically remote state variables should be
uncorrelated. Observations over Boulder should not update the atmo-
spheric state over London.

• By considering local information in the updates, effects of sampling vari-
ability of xfi is decreased.



MSE Properties of EnsKF

• What are the effects of sampling variability on EnsKF update?

• Suppose linear dynamics: Ê(xt|Yt−1) ∼ MN(E(xt|Yt−1),
1
m
Pf
t ).

We have the following orthogonal decomposition:

Ê(xt|Yt) =E(xt|Yt−1) + Kt[yt −HtE(xt|Yt−1)]

+(I−KtHt)[Ê(xt|Yt−1)− E(xt|Yt−1)]

+(K̂t −Kt)[yt −HtE(xt|Yt−1)]

+(Kt − K̂t){Ht[Ê(xt|Yt−1)− E(xt|Yt−1)]}

• Let ηt = (I−KtHt)[Ê(xt|Yt−1)− E(xt|Yt−1)].

• We wish to study E(ηt
′ηt) as a function of the eigenstructure (values) of

Pf
t .



Effects of Sampling Variability on EnsKF

• Let ith eigenvalue of Pf
t ∝ i−θ, θ > 1. Set tr(Pf

t ) = 1.

• Here, Ht = I, and R = I. Y-axis:
√
mE(η′tηt)

tr(Pu
t ) , X-axis: tr(R)

tr(Pu
t ).



Summary

• We have presented a bootstrap mixture Kalman filter for recursively
tracking atmospheric states.

• But, . . . what we really have is a updating procedure which is locally
linear.

• Maybe, . . . the weighting (represented by pi’s) can resolve non-gaussian
structures.



Future Directions

• How to construct mixture? (order, kernels)

• Sequential parameter estimation; incorporate model (parameter) uncer-
tainty.

• Validate mixture approach on higher dimensional system, e.g. Lorenz
(1996).

• Formalize algorithms for rank deficient cases, i.e., when m≪ dim(xt).


